

International Journal of Information Technology and Management

Vol. I, Issue No. I, August – 2011, ISSN 2249-4510

Available online at www.ignited.in Page 1
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

“An Analysis on Various Strategies for Developing
In Modular Java World-Wide-Web Programs”

Rajeev

Research Scholar, Shri Venkateshwara University, UP

Abstract – The Java Enterprise Edition (Java EE) has given the industry a standard suite of APIs and
administrations for creating server-side applications in Java. Over some discharges the Java EE standard has
included a lot of people new APIs however has looked after the present state of affairs regarding bundling and
modularity help. As Java EE applications build in size and intricacy the imperatives forced by the existing
segment model limit utility.

In this proposal we look at issues identified with building particular and evolvable server side applications in
Java. We utilize Eclipse's Osgi runtime as a support for tackling these issues and exhibit mix in a Java EE
Application the earth. We demonstrate how this methodology gives profits regarding backing for practical
decoupling of parts and takes into account enhanced extensibility and sending when analyzed with the run of the
mill methodology gave by the Java EE standard.

--♦--

INTRODUCTION

In spite of the fact that Java had its soonest victory on the
customer, and particularly the browser with Java Applets,
its standard appropriation came a little later when it got to
be generally utilized for building server applications.
Maybe the most punctual server-side Java engineering
created was for the web level, as Java Servlets. The
primary servlet motor was Sun's Java Web Server (JWS)
implicit 1995. JWS was decently preferred by the then
beginning server-side group and its prosperity incited the
formation of various other servlet motors what's more in
the end prompted institutionalization and the formation of
the first Servlet Specification in 1997.

One of the principle reasons servlets were so mainstream
was that they streamlined the creation of element HTML
web pages. Servlets follow up on the approaching HTTP
demands at a reasonably low-level and this makes them
suitable for taking care of rationale and state changes
however run HTML page creation is verbose and dull. Not
long after presenting servlets, Sun included what's more
later institutionalized Java Server Pages (Jsps), a more
script-like and HTML benevolent innovation based on-top
of Servlets, which extraordinarily rearranged page
creation. With a useable web level set up the servlet
holder business prospered with further corrections to the
Servlet and JSP determinations giving enhancements as
needed. As Java on the server got to be more develop,

both the measure of issues tended to by applications and
their consequent requests for more terrific practicality
(especially in the center and information level) expanded.

The Java Enterprise Edition (Java EE) was made to help
address the need for multi-layered architectures on the
server. In doing this it gathers various measures identified
with informing, database gain access to, administration,
and componentization together to produce one obviously
steady Java middleware stage. Notwithstanding pointing
out modifying APIs, this group of particulars has helped
formalize sending and bundling necessities discriminating
in guaranteeing a degree of convey ability between server
executions.

Java EE has given the fundamental consistency to raise a
biological system where application server sellers can
make complete stages for facilitating extensive venture
class applications. Most would agree that Java EE
innovation has a prevailing position in the Java middleware
market.

One of the tests confronting the Java server group and
merchants is identified with the size and intricacy of the
Enterprise Platform. The Java EE group of details now
blankets exactly twenty-six advances, and incorporates
prerequisites for interoperability with CORBA, SOAP, and
RMI stacks. The net effect is that a Java Enterprise server
has turn into a considerable and extremely perplexing bit

International Journal of Information Technology and Management

Vol. I, Issue No. I, August – 2011, ISSN 2249-4510

Available online at www.ignited.in Page 2
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

of programming.

The issues intrinsic in dealing with a stage holding several
libraries with possibly clashing adaptation conditions are a
genuine test. To that end, numerous application server
sellers have as of recently, or are currently re-basing their
part demonstrates on Java modularity innovations, such as
OSGI, that are particularly intended to manage these sorts
of issues.

At the base of this issue is an excessively oversimplified
class loader model. Class loaders are fundamental to Java
modularity help and, keeping tabs on web applications, the
Java Servlet particular gives a solitary class loader for
every deployable application archive. Basically a web
application is one course-grained part where all held
libraries impart the same namespace.

In spite of the fact that this suspicion streamlines the
collaboration display between server and application, it
restricts the application's capability to utilize libraries with
contrary adaptation conditions. What's more awful is that
with no reasonable segment model, incompatibilities may
not be identified until after an application has entered
generation. The ensuing mistakes might be extremely
troublesome to comprehend and the issue has been
named "Jar Hell" by the advancement group. Obviously
these are the sorts of issues we'd rather escape when
building server-side applications.

JAVA MODULARITY ALONG WITH CATEGORY
LOADERS

Modularity is the idea of separating a framework into its
constituent modules, where the modules work
autonomously of each one in turn yet might be joined
together along compelled lines to do convenient work. As
the quote above demonstrates, the essential inspirations
for modularizing a framework are to diminish interior
unpredictability and all the more firmly control the
connection between constituents. A product segment that
is both inside iron and inexactly coupled to its
surroundings is seen as alluring and modules accurately
epitomize these qualities.

In this section we inspect the Java language's implicit
backing for modularity. This Segment presents the Java
Archive (JAR) index organize, the essential unit of sending
used to convey libraries of code. In this Section we take a
gander at Java bundles and the "name dividing" help they
give. Class loaders are key to the modularity backing gave
by Java and this Section looks at their part.

At the most essential level a JAR record is just a ZIP
layered document that alternatively holds a "META-INF"

organizer where extra data utilized by the Java runtime is
put. The JAR configuration was initially used to permit the
bundling of Java classes furthermore assets together in a
solitary index to simplicity organization concerns. This was
essential for Java Applets since bundling some classes
together counteracted round-tripping for every unique
class. The organization has since been embraced by the
Java EE group of details for Web Archives (WAR),
Enterprise Archives (EAR), and Resource Connector
archives (RAR).

The "META-INF" envelope can hold discretionary indexes
yet for our reasons the most imperative is the
"Manifest.mf" document or essentially the show index. The
show document ordinarily holds entrances that depict the
substance of the JAR document. JAR indexes might be
straightforwardly stacked and run inside a Java Runtime
Environment (JRE) what's more, if utilized within this way,
two properties that give data handy to running and
interfacing to different libraries become an integral factor:
Main-Class and Class-Path. Principle Class is essentially
the name of the primary application class that ought to be
stacked and run. At run-time the JRE will perform its
instatement, stack the class, and run it by calling the
"primary" system passing in any contentions utilized.
Class-Path is additionally fascinating in the connection of
characterizing a module as it gives an instrument to a JAR
document to express a reliance on an alternate library.
This ascribe is utilized to give a rundown of relative Urls to
other JAR documents where classes could be stacked
from. Maybe the single biggest shortcoming of the
methodology is the weakness of communicating the
reliance as an area rather than the genuine imperative; the
classes and assets held in the JAR record. Likewise, the
Class-Path quality is just characterized when first making
the set of libraries to connection with, and is hence not
manageable to later run-time adjustment.

All class loaders are sub-classes of java. Lang. class
loader however is generally standard Java objects. The
Class loader class gives an arrangement of techniques
that permit it to discover characterize, and at last load
classes and make them accessible for different classes to
connection against and utilization. Classes might be
stacked certainly by the VM when needed or expressly by
utilizing the Classloader specifically. Notwithstanding the
methodology taken it at last comes about in the Class
loader’s load class(string class name) strategy being
called.

Client characterized class loaders might be composed by
the programmer and subsequently the execution parts of
"load class" can fluctuate. In any case, there are three
general steps that happen when this technique is called.

International Journal of Information Technology and Management

Vol. I, Issue No. I, August – 2011, ISSN 2249-4510

Available online at www.ignited.in Page 3
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

1. Determine if the partnered class recognized by
name has awhile ago been stacked by this class loader
and if so return it promptly.

2. Utilizing execution ward methods discover the
partnered class record bytes for the given class name.

3. Call the local characterize Class technique to have
the Java Virtual Machine (JVM or Java VM) decipher the
bytes and make a Class article and at long last return it.

JAVA WORLD WIDE WEB PROGRAMS AND THE
SERVLET API

Servlet and Java server Pages (Jsps) are two of the most
huge and fruitful advances for creating server-side web
applications in Java. These quotes from Jim Driscoll, one
of the earlies servlet programmers, demonstrate the
emotionless way in which Servlet and Java server Pages
were produced in the beginning of Java. More than ten a
long time later both advances have experienced
noteworthy change, yet the major ideas are still present
and surprisingly the first API is still in place.

In this part we present Java web applications and look at
the customizing model, organization, and backing for
modularity. In this Segment presents the Servlet API
furthermore gives a fundamental vocabulary to whatever is
left of the part. This Area presents Java server Pages
(JSP) and Tag Libraries, a complimentary and
institutionalized methodology for making web pages.
Servlets and Jsps are sent together in Web Archive
indexes. In this Segment talks about this arrangement and
different components of the web application's sending
descriptor. Web applications are at last sent into servlet
compartments and in this Segment we inspect the
modularity characteristics of this course of action. The talk
so far has recently secured the essential components of
the Servlet API. Three more components of the API that
merit saying are: the Request dispatcher, Filter, Http
Session and Listener.

 request dispatcher: The Request dispatcher
upholds the utilization of a normal application style where
a servlet going about as a front controller performs
introductory rationale transforming and afterward sending
the solicitation on to a second servlet that develops the
page. The Request dispatcher demonstrations as the
decoupling operator in backing of a servlet specialized
Model-View-Controller setup.

 filter: A Filter permits the change and incomplete
adjusting of approaching servlet demands and friendly
demands. Filters are actualized by the designer and are
much of the time used to work transparently with servlets

to help verification and clamping of friendly responses. http
session. The Http session gives a component that permits
the servlet compartment to recognize a set of appeal as
fitting in with a solitary client session.

 Commonly the cooperation is carried out by
sending a special session treat. On the server the Http
session gives an approach to store the co-partnered state.
Since state is archived on the server utilization of Http
session can get confused when different servers are
included. As a consequence of this use design numerous
Java EE servers give built-in help for Http session
bunching.

 listener: Audience really blankets an expansive set
of classes however what they have in as something to be
shared is that they permit a web application to respond to
the different lifecycle occasions around the appeal, servlet,
session, and web application. Custom audience members
are here and there kept in touch with handle logging and
when special instatement and cleanup is obliged that must
happen now and again not generally secured by the
existing servlet lifecycle.

OSGI PACKAGES, STRUCTURE AND SERVICES

OSGI is engineering for building element programming in
Java. As the above quote demonstrates, in an Osgi system
segments and administrations are live and can travel every
which way. The center specifications made by the Osgi
Alliance help this practicality giving module, lifecycle, and
administration communication layers in their structural
planning. This engineering has developed continuously
over almost ten years and with the appropriation by
Eclipse what's more later regard in the Java Community
Process as JSR 291 it seems balanced for standard
acknowledgement.

In this part we present Osgi engineering looking at its
backing for modularity what's more for building server
based applications. Area 4.1 presents packages, the unit
of sending and modularity in Osgi, and analyzes how they
are specified. This Segment inspects the key
characteristics of an Osgi framework taking a gander at
the module, lifecycle, and administration layers. In this
segment we look at those specified Osgi Services
important to this theory. Specifically we take a gander at
the Http Service as it gives backing to building servlet
applications. There are numerous innovations identified
with Osgi and in this segment we take a gander at a few of
the more essential cases.

In Osgi all Java antiques are sent as packs and this
incorporates the framework execution itself. The package
that holds the framework execution is called the System

International Journal of Information Technology and Management

Vol. I, Issue No. I, August – 2011, ISSN 2249-4510

Available online at www.ignited.in Page 4
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

Bundle and is by definition dependably introduced and
primed to utilize. Since the System Bundle is the first
package in a system it is not permitted to utilize Import-
Package to intention conditions. Rather it must resolve all
its conditions possibly inside or else from the earth used to
begin the framework. In this respect the System Bundle is
extraordinary. It is the main package that has immediate
deceivability of classes and assets outer to the framework.
One of its key responsibilities is to export those non-java.*
bundles from the JRE and outer environment fundamental
for operation.

ANALYSIS AND EXPERTISE

The Servlet Bridge and its connected segments were
created at the Eclipse Establishment as a major aspect of
the Equinox venture. In 2005 not long after the Eclipse
discharge there were various server-side Osgi talks in the
equinox news bunches that reached a state of perfection
in the arrangement of a "server-side" hatchery venture.
The beginning work completed in the hatchery empowered
Equinox to be installed in a servlet compartment and was
incorporated as a component of Eclipse. The remaining
segments including the Http Administration usage and
Java server Pages backing moved on from the hatchery in
spring 2007 and are currently utilized as a part of the
Eclipse SDK.

The Servlet Bridge is bundled as a WAR document along
these lines commonly our approval environment obliges a
servlet compartment and a Java runtime. Notwithstanding
our parts for the Servletbridge we add an Osgi
administration support to give us a chance to inspect
framework status and deal with the set of packs and
administrations introduced. To assess our execution we
make an environment that mirrors an average servlet
motor setup. Our surroundings comprises of:

 Microsoft Windows XP Sp2

 sun Microsystems Java Runtime Environment
(JRE) 5.0

 apache Tomcat form 5.5

The decision of working system is discretionary. The
utilization of Sun's JRE and Apache Tomcat is a honestly
basic and sensible setup both for designers and handling
situations. Tomcat 5.5 is especially proper as it is the
reference usage for the servlet 2.4 specifications.

CONCLUSION

In this section we first reexamine our inspirations and
affirm that we have fulfilled our objectives. We then identify

the commitments of this theory and end by talking about
ranges for future work.

The essential objective of this theory is to give a
methodology to building web applications in Java where
the distinctive parts might be powerfully included,
reconfigured, or uprooted. In this system, every part is an
autonomous module attached to other parts just to fulfill
explicit conditions. The web application could be made
from these pieces with certainty that they won't meddle
with each one in turn aside from where characterized to.

Distinguishing that for the foreseeable future Java EE
servers will probably be the framework made accessible to
run these web applications we propose coordinating
whatever methodology we concoct into nature's domain.
That approach is Osgi and speaks to the state of the craft
with regards to the utilization of Java class loaders for
giving modularity help.

The combination of Osgi with a Java EE environment is
trying as both innovations need to take control of the Java
runtime. Utilizing the Equinox usage we have indicated
how an Osgi framework could be adjusted to permit it to
run in this environment while as of now upholding the solid
disconnection guarantees essential for modularity.

Our answer, the Servlet Bridge, makes a correspondence
channel limited to the Servlet API that permits Osgi based
web parts to handle the appeals. Shockingly Osgi help for
servlet applications is not as developed as what's given by
current servlet motors. Where judicious we have given
upgraded backing to the Osgi Http Service for both the
Servlet API and Java server Pages. To approve our
methodology we have indicated how Equinox could be
started from a web application running inside the Tomcat
servlet motor. We then exhibited the expansion
furthermore evacuation of web parts at runtime and
additionally the help Osgi accommodates running various
forms of the same part.

To further re-guarantee our methodology is sound we give
the set of Java EE application server situations and Java
runtimes where we have affirmed right conduct. We at that
point show a set of existing illustration applications we
have incorporated with to accept our scope of the Servlet
API and Java server Pages engineering. At last we offer a
couple samples where other open source undertakings
and business items are utilizing our result effectively.

Having the capacity to install an Osgi framework inside of
a Java EE environment opens up a number of fascinating
roads for future work. Our methodology took a gander at
giving backing for Osgi server applications that utilize the
Servlet API and Javaserver Pages. There are numerous

International Journal of Information Technology and Management

Vol. I, Issue No. I, August – 2011, ISSN 2249-4510

Available online at www.ignited.in Page 5
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

other Java EE Apis that could likewise be considered.
Analyzing how Enterprise Java Beans (EJB), Java
Messaging Service (JMS), and Java Naming and Directory
Interface (JNDI) could be brought about a noticeable
improvement coordinate with an Osgi environment look
like especially fascinating roads of examination.

REFERENCES

 Apache Felix. Apache Foundation.
http://felix.apache.org

 Apache Jakarta Taglibs. Apache Foundation.
http://jakarta.apache.org/taglibs/index.html

 Apache Struts. Apache Foundation.
http://struts.apache.org

 Apache Tomcat. Apache Foundation.
http://tomcat.apache.org

 B. Christos’s. “Internals of Java Class Loading”.
http://www.onjava.com/pub/a/onjava/2005/01/26/classloadi
ng.html, 2005.

 BEA. BEA micro Service Architecture.
http://www.bea.com/framework.jsp?CNT=msa.jsp&FP=/co
ntent/, 2007.

 C. Baldwin, K. Clark. Design Rules: Volume 1. The
Power of Modularity. MIT Press, 2000.

 Eclipse BIRT. Eclipse Foundation.
http://www.eclipse.org/birt.

 Eclipse Equinox OSGi Framework. Eclipse
Foundation. http://www.eclipse.org/equinox

 Eclipse Equinox Server Work Area. Eclipse
Foundation. http://www.eclipse.org/equinox/server

 Eclipse Rich Client Platform. Eclipse Foundation.
http://www.eclipse.org/rcp

 Eclipse.org. Eclipse Foundation.
http://www.eclipse.org

 J. Corwin, D. Bacon, D. Grove, C, Murthy. “MJ: A
Rational Module System for Java and its Applications”.
OOPSLA, 2003.

 J. Driscoll. “Servlet History”.
http://weblogs.java.net/blog/driscoll/archive/2005/12/servle
t_history_1.html, 2005.

 M. Buechi. “Eclipse Plugin-Based Applications and

J2EE Components”. Choice Maker Technologies
whitepaper. 2003.

