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1. INTRODUCTION 

Located at the intersection of Control Theory, Time Series 
Analysis, and Statistical Process Control, the Statistical 
Process Adjustment (SPA) field is a set of Statistical 
Techniques aimed at modeling, and hence, forecasting and 
controlling a dynamic process. Two distinctive 
characteristics of SPA are a) that the process responses 
relate to quality characteristics of a product (or of a process 
producing it), and b) the implementation of the adjustments 
is not fully automatic since SPA corresponds to a higher-
level supervisory controller, i.e., a controller of lower-level 
controllers which in turn operate on a production process. 
Property a) differs from many control theory applications 
where some physical variable is of interest, but the aim is 
not necessarily quality control, and b) emphasizes the 
hierarchical nature with which the adjustments are 
implemented, on whole complex processes or machines 
made of several different components, but modeled as a 
single processing stage. Given the complexity of the 
machine or process, only a statistical, i.e., data-based 
modeling is feasible. This is in contrast to first principles 
models frequently used in control theory. 

A key question we would like to address in this paper is: is 
SPA an area with enough intellectual content and practical 
relevance to justify its study within Statistical methodology? 

We pose this question because two widespread 
conceptions found among Statisticians and Engineers: 

1. process adjustments are, for the most part, 
unnecessary in practice. This believe is based mainly on 
statements in Deming's writings and in particular in relation 
to his \funnel experiment"; 

2. process adjustments are of course necessary, but 
practically all the relevant problems have been solved by 
control theorists. While control theory is a fertile and active 
area of research, all the problems in SPA have by now 
been solved. Most of the work on SPA is simply a 
repetition of previous control theory work. 

Believe 1 is found mainly among Statisticians and has 
been discussed in the literature at length based on the 
funnel experiment (e.g., MacGregor 1990); believe 2 is 
found among Engineers, and has not been discussed 
much, if at all, in the literature. It is the purpose of this 
paper to show that both viewpoints are misconceptions, but 
we will place more emphasis on arguing against the 
second viewpoint. In order to do this, we will review how 
the SPA field originated, what were the main initial 
problems, how it has evolved in general terms, and 
perhaps more importantly, what recent work relevant in 
industrial practice has been conducted. No effort to provide 
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a complete literature review was made. For bibliographic 
references up to 2001 see Del Castillo (2002a). 

It is hoped that the problems described here will provide 
renewed impetus to the area. The paper closes with a 
discussion of relevant, practically-important problems 
which are still open for solution. The objective is to provide, 
by example, enough evidence for an unqualified \yes" 
answer to the key question posed above, and provide 
some hints for further research. 

2. ORIGINS OF SPA 

Since its origins in the early 60's, work in what we now can 
consider the SPA field was developed by both Control 
Engineers (working in quality control applications) and by 
Statisticians, who, for the most part, had a background in 
Chemical Engineering. This is more than a simple 
anecdote, since it determined what type of processes and 
corresponding problems were initially studied in this field. 
SPA originated from work apparently done independently 
by Box and Jenkins (1962, 1963) on adaptive optimization 
and control and minimum mean square error (MMSE) 
control, and by 

º
AstrÄom (1963) on \minimum variance" 

(equivalent to MMSE) control (
º
AstrÄom was interested in 

implementing Kalman's ideas on Adaptive Control based 
on operating data). While there were some interesting 
papers on process control (as opposed to control charting) 
written by Statisticians in the late 50's and early 60's (e.g. 
Barnard, 1959), the work by Box and Jenkins was the most 
influential in the Statistics literature. 

The MMSE control problem relates to finding a rule (a 
\controller") that tells us how to vary a controllable factor xt 
such that the MSE of a dynamic response yt (which we 
assume to be deviations from target) is minimized in the 
following transfer function model: 

  (1) 

Here, B
1
; A 

1
; C

1
 and D

1
 are polynomials in the backshift 

operator B (all polynomials start with a one except B
0
 which 

starts with some arbitrary constant b0) and k is the delay, 
i.e., the number of whole discrete time periods between the 
controllable factor is changed and its effect on the 
response appears to be observed for the ¯rst time. It is 
assumed all-time series have equidistant observations in 
time. Even control engineers to this day call this model the 
Box-Jenkins model. Contrary to other different ways of 

writing a transfer function model, 

(1) has a natural \signal plus noise" interpretation, since if 
xt = 0 for all t, then is an ARIMA model that represents the 
uncontrolled output (here polynomial D

1
may have one or 

more roots on the unit circle, allowing to model 
homogeneous non-stationarity, see Box, Jenkins and 
Reinsel, 1994). This also occurs if xt =constant since then 
the ¯rst term on the right is simply a constant. Model (1) 
also has the advantage of avoiding multiple common terms 
when fitting (Box et al., 1994). 

Despite the nice interpretation and model-fitting 
advantages, it is perhaps easier to de-rive an MMSE 
controller with fewer polynomials around. The ARMAX form 
of a transfer function model, used by AstrÄom, is 

 (2) 

with the obvious relations between the two models being A 
= A

0
D

0
, B = B

0
D

0
, and C = C

0
A

0
. Let n be the maximum 

order of the polynomials A, B and C. The optimal 
MMSE.feedback controller, found by both AstrÄom and 
Box and Jenkins is 

 (3) 

From this initial work, an explosion of related work took o®. 
º
AstrÄom and his colleagues and students (notably L. 
Ljung) went ahead and founded the Swedish school of 
Adaptive Control. Adaptive Control is by now a mature 
discipline within Control Theory (

º
AstrÄom and Wittenmark, 

1989). Adaptive controllers continuously re-estimate the 
parameters of a given model, thus their properties are 
di±cult to analyze. Although such recursive estimators are 
known to burst if the inputs (the x's) do not vary enough, in 
practice several safeguards that monitor the \health" of the 
estimator (not unlike SPC schemes) are applied to provide 
persistent excitation without bursting (see Ljung, 1999) (the 
regression equivalent of the lack of excitation problem is an 
X

0
X matrix very ill-conditioned due to similar rows in X). 

For their part, Box and Jenkins and their students (notably 
J. MacGregor) continue to develop SPA in the 70's and 
beyond by studying problems with a clear Statistical 
content. We will review some of this work. But ¯rst it is 
pertinent to address a not so-well-known misconception 
created by Deming's funnel experiment. 

3. WHEN ARE PROCESS ADJUSTMENTS 
NECESSARY? 

There is a considerable good understanding of when 
adjustments are necessary and why, see e.g., MacGregor 
(1988) and Del Castillo (2002a, chapter 1), who discuss 
this issue based on Deming's funnel experiment. We would 
like to point out a common misconception made by some 
authors who prefer not to contradict directly Deming's 
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remarks, as expressed, e.g., in his Out of the Crisis book 
(Deming, 1982). It is sometimes argued that Deming's 
remarks about not to adjust are actually correct provided 
the process mean is not moving. It is argued that if the 
process mean changes with time, then adjustments are 
needed, otherwise, they are not. This is incorrect. A 
moving mean is neither a necessary nor a su±cient 
condition for adjustments to be required. To show why, 
consider the funnel experiment in which, the analogous 
univariate process would obey Shewhart's model (the 
marbles evidently obey a bivariate process): 

 (4) 

where yt is the observed deviation from target and ¹ is the 
mean deviation from target. Deming assumes the funnel to 
be on target, i.e., ¹ = 0. There are two important aspects to 
notice: first, the process starts on target and remains there 
unless an adjustment is made. Second, the observations 
form an i.i.d. (normal if the "t's are normal) sequence. 

In a very important but somewhat neglected paper (despite 
being reprinted in 1983), F. Grubbs (1954) assumed the 
second condition above but assumed that, at startup of the 
process, j¹j = d =6 0, where d is a setup error. If the only 
cost of interest is the cost incurred when running the 
process offtarget, then it is evident that corrective action is 
necessary. How to do this in such a way that is minimized 
is called the Setup Adjustment Problem, with many 
variants that have been studied considerably in the last 7 
years (Del Castillo, 1998, Trietsch, 1998, 2000, Pan and 
Del Castillo, 2003, 2004, Colosimo et al., 2004, Lian et al., 
2005). 

Note how the process mean is constant, there is no 
autocorrelation, and still process adjustments are needed. 
This shows by counterexample that it is not necessary that 
the process mean moves for adjustments to be required. A 
moving mean is neither a sufficient condition for 
adjustments to be required: as a counterexample consider 
the case of a process with a moderate drift in the mean 
such that all product will be within specifications (or not too 
far from target to cause a substantial cost) for the duration 
of the production run, and suppose the cost of adjustments 
is relatively very large. Then, it follows that adjustments are 
not justified. 

In conclusion, the need for process adjustments depends 
on the process model and the cost structure. Evidently, if 
all conditions behind Deming's funnel experiment hold, 
then simple process monitoring is optimal from a MMSE 
point of view. 

4.1 The Setup Adjustment Problem 

Solutions to the setup adjustment problem and to many of 
its variants, some to be described shortly, are very 
important for the control of discrete part manufacturing 
processes. In this type of processes, the operation of 
setting up a machine for production of a new lot may 
induce offsets or shifts in the values of the quality 
characteristics of the parts relative to their targets. No 
disturbance other than the setup offset and white noise are 
assumed. If the unknown offset is a constant d, the 
deviation from target at time t can be expressed as (Del 

Castillo et al., 2003): 

 (5) 

  (6) 

    (7) 

Del Castillo et al. (2003) show how (9) results from using a 
simple Kalman filter to esti-mate the \state" ¹t and adjusting 
by bt. This formulation allows to apply Linear Quadratic 
Gaussian theory to extend the basic setup adjustment 
problem to multiple input-multiple output (MIMO) problems, 
problems with errors in the adjustments, and problems with 
quadratic adjustment costs. It also allows to make 
interesting connections between the setup adjustment 
problem and other Statistical techniques such as 
Stochastic Approximation and Recursive Least Squares. 
These extensions and connections were not possible using 
Grubbs' more complex approach to the problem. 

While the basic setup adjustment problem can be solved 
with well-established control theory techniques, many more 
important variations are problems that cannot be solved 
making use of existing control techniques and require new 
methodology. 

 (8) 

 (9) 

From a Statistical perspective, the most interesting and 
practical variation of this problem is when the process 
parameters ¹d, ¾d

2
, and ¾v

2
 are unknown. Then the 

problem is an Adaptive Control problem, as it involves 
controlling a process with unknown parameters. The 
structure of the problem, however, has not been addressed 
by Control theorists, as far as we know, since here the 
variances need to be estimated on -line. 

Recent work in setup adjustment under unknown 
paraments is Bayesian and based on Markov Chain Monte 



 

International Journal of Information Technology and Management                    

Vol. II, Issue I, February-2012, ISSN 2249-4510 

 

Available online at www.ignited.in Page 4 

E-Mail: ignitedmoffice@gmail.com 

Carlo (MCMC) and Sequential Monte Carlo (SMC) 
techniques. In Colosimo et al. (2004), the assumed model 
is analogous to (5-7): 

 (10) 

 (11) 

(12) 

The Bayesian MCMC controller learns how to \anticipate" 
the offsets, providing a perfor-mance that eventually 
mimics a feed forward controller. Unnecessary adjustments 
that may inflate the overall process variance are reduced 
via a conditional ¯rst adjustment rule, in which (13) is 
implemented only when a credibility interval for ¹ excludes 

zero. See Lian et al. (2005b) for details. 

Recent work on setup adjustment includes the case when 
parameters are known with sufficient accuracy. If this is the 
case, then the sum of the total cost of running the process 
o® target and of adjusting can be minimized by defining a 
schedule of adjustments, much in the sense of a 
maintenance plan. See Trietsch (2000) and Pan and Del 
Castillo (2004). Other recent work includes the case of an 
asymmetric o®-target cost, a common situation in discrete 
part manufacturing. One approach is to let the process 
converge to target from the side of least cost. Stochastic 
approximation techniques can then be used for this 
purpose. See Colosimo et al. (2005) for more details. 

Other relevant variations of the setup adjustment problem, 
in particular, integration with process monitoring, the case 
when there a re fixed adjustment costs {resulting in \dead 
band" policies{ and the use of SMC techniques are 
described in the next sections. 

4.2 Dead band" adjustment policies 

The dynamic programming problem, solved by Crowder, 
yields a dead band solution analogous to the infinite-
horizon solution but with dead band limits Lt that \funnel 
out" as the end of the production run approaches. The 
implication is that if the process will end soon, an 
adjustment at that point brings less future benefits than an 
adjustment early in the production of the lot. Jensen and 
Vardeman (1993) consider the same finite-horizon problem 
as in Crowder (1992), but studied the case when 
adjustment errors can occur randomly. They show that 
even if no fixed adjustment cost exists, adjustment errors 
imply a dead band policy. 

The work on dead band adjustment thus far summarized is 
based on knowing all process parameters. For the model 

assumed by Crowder (equivalent to that used by Box and 
Jenkins, equation 14): 

  (13) 

 (14) 

Recently, Crowder and Eshleman (2001) propose an 
alternative to the Bayesian SMC approach just described 
based on using Maximum Likelihood Estimation for the 
variances from a set of n open loop runs (i.e., data 
obtained when the controller is disconnected), and then 
plug-in those estimates in the usual Kalman filter estimate 
of the state. They reported small sample properties of the 
estimators, concluding that at least between 25 to 50 
observations are necessary to obtain reliable estimates. It 
would be interesting to see how can the MLE method be 
modified for closed-loop data, and how it behaves 
compared to the Bayesian approach. It seems likely that 
for non-informative priors, the performance should be quite 
close, with the advantage of the Bayesian method of being 
able to incorporate prior information about the parameters 
in case it exists, which would improve convergence of the 
estimation process. 

It is important at this point to emphasize that these and 
other variations of dead band control are not considered in 
the control theory literature. 

4.3 PI and EWMA control 

The last term, with action proportional to the difference of 
the response, is frequently not used in practice (Del 
Castillo, 2002a, Chapter 6). This results in PI controllers, 
which have received considerable attention in the Statistics 
community due to the work by Box and Luceno (1997). 
These authors show how to implement a PI controller 
graphically (an idea ¯first shown by Box and Jenkins, 
1963), and show how PI controllers are quite robust with 
respect to variations in the assumed process model. They 
convincingly show that the inflation in variance due to 
adjusting with a PI controller a process that requires no 
adjustment, {like Deming's funnel{ is quite moderate. 

 (15) 

 (16) 

The robustness of PI controllers is widely acknowledged 
and known by process engineers in practice. Process 
engineers working in industry know well the adagio that 
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says that all it takes most of the times is a good integral 
controller. 

The robustness of PI controllers comes from its integral 
action, controller, one in which the controller linearly tracks 
the response, is a quite poor controller in general, since, 
for example, it does not provide offset-free control. In 
contrast, and this should be of interest to persons familiar 
with Statistical Process Control (SPC) charts, an integral 
controller will compensate against shifts in the mean of a 
stationary process. This will make detection of a shift in a 
PI-controlled process difficult (see Jiang and Tsui, 2002, 
and the discussion below on SPC-EPC integration). The 
time to recover of the process will be a function of the shift 
magnitude and of the integral parameter KI . In principle, if 
the adjustments are unconstrained in size, and integral 
controller will eventually compensate against shifts of any 
size. The design of a PI controller consists in selecting KP 
and KI (see Box and Luceno, 1997, Tsung et al., 1998). 
Constrained input variance PI controllers are discussed by 
Box and Luce~no, 1997. An input variance constrained PI 
controller that tunes KP and KI on-line (i.e., it is self-tuning) 
was developed by Del Castillo (2000). The approach 
solves for the Lagrange multiplier of the constraint Var(rxt) 
= c, and uses this multiplier in the Clarke et al. (1975) 
controller, which utilizes it to constrain the input variance 
(see Del Castillo, 2002a). Since it is not based on a 
recursive estimator and utilizes Box and Luceno suggested 
settings for the parameters as initial values, the bursting 
behavior typical of adaptive controllers is avoided. 

A minimal condition for a good controller is that it must be 
stable. Stability has not always been considered in the 
SPA literature, as some of the discussants of the Box and 
Jenkins (1962) paper pointed out. Stability conditions of 
EWMA and DEWMA controllers has been a matter of study 
in the last 10 years (see, e.g., Ingolfsson and Sachs, 1993, 
Guo et al., 2000, Del Castillo, 1999). For a large variety of 
disturbances, an EWMA controller is stable if and only if j1 
¡ ¸»j < 1, where » = g=gb. Stability conditions for DEWMA 
controllers with unit delay were derived by Del Castillo 
(1999) and later simplified by Tseng et al. (2002). They 
show how if Nt is an ARIMA(p,d,q) with drift model (d · 2), a 
sufficient condition for asymptotic stability is that g=gb < 
3=4. MIMO double EWMA controllers have been studied 

by Del Castillo and Rajagopal (2002). 

The work thus far described on PI and EWMA control is 
just an application of existing methodology in Control 
Theory. To the eyes of control theorists, this work looks as 
straight-forward approaches, compared to the complexities 
of current control theory research. Let us now turn to some 
new methodological developments that built on the 
previously cited work. In the last section of this paper we 
will also delineate some further problems related to EWMA 

control that arise in practice and require new 
methodologies. 

Some interesting recent work by Hamby et al. (1998) 
introduces the concept of prob-ability of stability" and 
\probability of performance" in the design and analysis of 
EWMA controllers. These authors noted how in run to run 
applications, the gain g is usually fitted off-line based on 
designed experiments. In their paper, the gain is actually a 
vector µ, as they analyzed the multiple input, single output 

case (MISO) model: 

The aim is the same, to develop controllers that are 
insensitive to uncertainties in the assumed model. As 
mentioned by Apley and Kim (2004), Robust Control, and 
in particular, H1 optimization is a mature field that has 
dominated most of Control Theory research in the last 
couple of decades. Its central precept is that if one can 
place deterministic bounds on the unknown parameters of 
a process, then a worst case performance index which 
considers variations of the parameters within such bounds 
can be optimized and a robust controller design obtained. 

In the type of manufacturing quality control applications 
where SPA has evolved, such view of robustness is not 
satisfactory since parameters are usually estimated from 
production data of complex industrial processes (this is 
echoed by 

º
AstrÄom and Witten mark, 1989, when 

proposing Adaptive Control techniques). In such 
environment, it will be hard or impossible to place definite 
bounds on the variation of the parameters. These noisy, 
data rich environments imply that a probabilistic measure 
of uncertainty will generally be possible and preferable. 
The means by which probabilistic measures can be 
developed, as in the last two paragraphs above, is 
Bayesian inference, to which we return in Section 5. 

4.4 SPC-EPC" integration 

“Fault Detection" and “Advanced Process Control" in 
semiconductor manufacturing circles, the integration of 
SPC tools and “Engineering Process Control” methods to 
operate on the same process is a problem that naturally 
falls within the SPA field. There have been two 
fundamentally different approaches for doing this 
integration of techniques: 

1. The SPC mechanism acts in conjunction with an 
MMSE, PI, or other known controller which is active all the 
time. This approach was stated conceptually by Vander 
Weil et al. (1992), Faltin et al. (1993) and Tucker et al. 
(1993) who coined the term Algorithmic Statistical Process 
Control". In this case, monitoring is typically conducted on 
the output of a controlled process, although approaches 
have been proposed to monitor both xt and yt jointly (Tsung 
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and Shi, 1999). Note how the cause of a SPC signal can 
be assignable to a faulty feedback controller. In this way, 
the SPC scheme helps to monitor both the health of the 
process and of the EPC scheme. This has connections 
with the considerable body of work on SPC for auto 
correlated data (literature too numerous to cite here), since 
the output of a controlled process is typically correlated in 
time (e.g., consider the closed-loop equation 4). This, in 
turn, relates to the analysis of the response patterns or 
\signatures" of a dynamic system to specific upsets (see, 
e.g., Yang and Makis (2000), Tsung and Tsui, 2003). 

2. The SPC mechanism acts as a trigger of the EPC 
mechanism. This is the approach of authors such as Sachs 
and Ingolfsson (1995) and of Guo et al. (2000) in the area 
of \run to run" control (an early reference of this approach 
is Bishop, 1965). Usually, a step-like disturbance is 
assumed to occur with some probability. An SPC-like 
scheme is from a MSE point of view as p increases. Box 
and Luce~no (1997, Chapter 5), showed that the IMA(1,1) 
model is in fact a good approximation to the random jump 
model even for relative low values of p. Despite this fact, if 
one always uses an EWMA controller based on an 
IMA(1,1) model, monitoring for the eventual elimination of 
assignable causes will be a task harder to accomplish. 

An instance of recent work along the first line of reasoning 
described above is by Jiang and Tsui (2002), who studied 
the Average Run Length properties of SPC charts 
designed to monitor the type of auto correlated processes 
which result from adjusting a process with a MMSE or PI 
controller. The case of an MMSE controller is particularly 
tractable, given the closed-loop equation (4), thus 
essentially the problem is one of monitoring a MA(k ¡ 1) 
process. They concluded that for PI-controlled process, 
detecting the presence of a shift is difficult by monitoring 
the output yt. They suggested instead to monitor the level 
of the controllable factor (xt). This can actually be 
generalized to any controller that has integral action: the 
integral action will compensate for the shift disturbance, 
thus only a transient \spike" in yt will appear. The more 
aggressive the integral action is, i.e., the larger KI is, the 
shorter this window of opportunity to detect will be. In some 
industrial processes, e.g., semiconductor manufacturing, 
aggressive I control is common, so this is a relevant 
problem in practice. Because of this \masking" of the 
assignable causes that impede their removal through the 
usual {but not modeled { process improvement steps that 
SPC recommends (called \technical feedback" by Box and 
Jenkins, 1962), some authors have argued against process 
adjustments. This is typically not an option, particularly if 
the process drifts, i.e., if it is open-loop unstable. 

Thus, in this alternate SPC/EPC integration approach, an 
EPC mechanism is invoked only when it is necessary. This 

alternative resembles a dead band controller and the 
\machine tool" problem, but the assumed disturbances and 
motivations are different. The machine tool problem 
assumes an IMA(1,1) disturbance, which is well-known to 
be optimally forecasted through the EWMA in eq. (15). 
There, the fixed cost of adjusting implies the dead band 
structure of the solution; in the integrated SPC-EPC 
approaches the SPC acts as a dead band since no other 
disturbance is supposed to exist between shift detection 
times. Interestingly, as p, the probability of a shift in any 
time point, increases, then the corresponding stochastic 
process for yt increasingly resembles an IMA(1,1) process 
(which in itself can be thought of as a random walk 
observed with error). This implies that when p is large, 
simply using an EWMA controller based on (15) without a 
dead band will work better from a mean squared deviation 
point of view than the type of integrated CUSUM/harmonic 
rule described here. This was also noted by Chen and 
Elsayed (2002), who studied how to tune an EWMA 
controller xt = ¡at=g where at is an EWMA of the yt's, when 
the disturbances follow the step-like process described by 
(17). From our description above, the IMA(1,1) will be an 
increasingly better model and a controller based on it will 
be increasingly closer to optimal 

In the type of manufacturing quality control applications 
where SPA has evolved, such view of robustness is not 
satisfactory since parameters are usually estimated from 
production data of complex industrial processes (this is 
echoed by 

º
AstrÄom and Witten mark, 1989, when 

proposing Adaptive Control techniques). In such 
environment, it will be hard or impossible to place definite 
bounds on the variation of the parameters. These noisy, 
data rich environments imply that a probabilistic measure 
of uncertainty will generally be possible and preferable. 
The means by which probabilistic measures can be 
developed, as in the last two paragraphs above, is 
Bayesian inference, to which we return in Section 5. 

 

Figure 1: CUSUM-harmonic rule integrated approach. Left: 
CUSUM chart; right: observed and mean quality 

characteristic (top) and controllable factor values (bottom). 

Note how the \machine tool" dead band does not include a 
monitoring scheme, thus assignable casue removal is not 



 

International Journal of Information Technology and Management                    

Vol. II, Issue I, February-2012, ISSN 2249-4510 

 

Available online at www.ignited.in Page 7 

E-Mail: ignitedmoffice@gmail.com 

possible using a dead band scheme (despite its 
resemblance of an SPC chart). 

5. BAYESIAN METHODS IN PROCESS 
ADJUSTMENT 

We have already referred to recent SPA methods that are 
Bayesian, such as setup adjustment using MCMC 
techniques (Colosimo et al., 2004), dead band schemes for 
process adjustments (Lian and Del Castillo, 2005), and 
cautious control (Apley and Kim, 2004). In this section we 
further comment on the potential of modern Bayesian 
statistical techniques in SPA and some areas open for 
research. Well-known control theory techniques have 
connections with Bayesian techniques or can be 
interpreted in a Bayesian way, two examples being Kalman 
filtering for state estimation (with known parameters) and 
Adaptive Control. The main potential for new Bayesian 
SPA methods, much along the type of problems discussed 
earlier, is on the adjustment of short-run processes with 
unknown parameters. 

Breakthroughs in numerical integration developed over the 
last 15 years can now be routinely utilized for posterior 
inference when non-conjugate priors are desired. In 
particular, MCMC methods (Gelman et al., 2003) have 
been developed intensively and proved to provide solutions 
to previously un tractable problems. 

For a problem in which data arrives sequentially in time, 
however, MCMC methods may not be the best choice. In 
MCMC, Markov Chains iterations yielding the target 
posterior distribution are repeated from scratch every time 
a single new observation yt+1 is obtained, without reusing 
the posterior distribution previously obtained a period 
before, i.e., at period t. An alternative to MCMC is 
Sequential Monte Carlo (SMC) methods (see Figure 2). 
SMC methods also rely on Monte Carlo algorithms for the 
solution of Bayesian inference problems. In SMC, posterior 
distributions of \particles" µ

(i)
 (values of the parameter) are 

created numerically from calculating associated weights wi. 
These weights are recomputed after each observation is 
obtained based on the likelihood of the corresponding 
particle given the new datum and the previous set of 
weights, keeping in this way information from the previous 
step. The weights are then used to provide posterior 
estimates of any function of the parameter of interest at 
time t + 1. A major advantage of SMC techniques is that 
they are considerably faster than MCMC, allowing for on-
line control. A brief sketch of the computations required to 
approximate the expectation of some function of an 
unknown parameter µ at step i is as follows: 

 

Figure 2: The update of a posterior distribution in MCMC 
and SMC. 

Here L(µ
(j
)jyi) is the likelihood function of the jth particle 

given the latest observation. If, e.g., interest is in the 
sample mean, then f ´ 1. The rejuvenation step is executed 
if the sample of particles is too poor. This will tend to 
happen when ¼(µ) is a non-informative prior. In such case, 
many particles will be unlikely given the data, so their 
weights wi will be zero after a few iterations. The 
distribution of the wi's will contain only a few non-zero 
weights, and will provide biased estimates. A rejuvenation 
step (Balakrishnan and Madigan, 2004) smoothes the 
posterior distribution of the particles. Then, importance re 
sampling of the parameters µ is performed using the 
updated weights. See Doucet et al. (2001) for more details. 

Lian et al. (2005) apply the SMC method to the setup 
adjustment problem for un-known parameters. They show 
how SMC gives results equivalent to MCMC but a fraction 
of the computing time. The bayesian dead band 
adjustment scheme mentioned earlier (Lian and Del 
Castillo, 2005) also utilizes SMC. There is a wide range of 
other relevant control problems with unknown parameters 
that could be approached with SMC techniques. This 
includes adaptive filtering problems and, in general, State-
Space models. The SMC procedure provides posterior 
parameter distributions of any relevant parameters which in 
turn can be used to minimize a variety of cost functions. 
The solutions so obtained will in general be suboptimal 
since the certainty equivalence principle (which indicates 
when using plug-in estimates leads to optimal solutions, 
see Del Castillo, 2002a, Appendix 8B) applies only in 
restrictive cases. Nevertheless, the solutions obtained may 
still have excellent performance considering that a \dual 
control" optimal solution is computational prohibitive in 
most cases (see 

º
AstrÄom and Wittenmark, 1989). In a 

given application of SMC to process adjustment, additional 
work is needed to quantify its performance over some 
known lower bound or reference point of performance. 

A second area we would like to highlight where Bayesian 
inference can play an important role is in Closed-loop 
identification. If lack of identifiability is a problem due to not 
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having enough information about the process parameters, 
it seem natural to use a Bayesian approach in which any 
prior information available can be incorporated. How to 
determine such prior(s) and what type of additional pieces 
of information one should be able to model with the priors 
are questions open for future research. MCMC methods 
used for open and closed loop identification have recently 
been mentioned by Ninness et al. (2002) and Thil and 
Gilson (2004), respectively. 

CONCLUSION 

Process adjustments are, for the most part, unnecessary in 
practice. This believe is based mainly on statements in 
Deming's writings and in particular in relation to his funnel 
experiment", process adjustments are of course necessary, 
but practically all the relevant problems have been solved 
by control theorists. While control theory is a fertile and 
active area of research, all the problems in SPA have by 
now been solved. Most of the work on SPA is simply a 
repetition of previous control theory work. In this paper, a 
view of the origins, present status, and a discussion of 
some areas for further research on Statistical Process 
Adjustment methods was given. The goal was to provide 
convincing examples that would demonstrate the 
intellectual and practical value of this field of Industrial 
Statistics, and to promote interest for further research. 
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