

International Journal of Information Technology and Management

Vol. III, Issue No. I, August – 2012, ISSN 2249-4510

Available online at www.ignited.in Page 1
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

“Modular Java - Generating Adaptable Software
Having OSGI and Planting Season”

Rajeev

Research Scholar, Shri Venkateshwara University, UP

Abstract – With the rapid changes that happen in the zone of Web innovations, the porting and accommodation
of existing Web applications into new stages that exploit up to date advances has turned into an issue of
expanding criticalness. This paper displays a reengineering framework whose target system is a construction
modeling based on the Model-View-Controller (MVC) configuration design and empowered for the Java Platform,
Enterprise Edition (J2ee). The proposed framework is principally concerned with the decay of a legacy Web
application by recognizing software parts to be changed into Java protests, for example, Java beans, Java server
Pages (JSP), also Java Servlet.

--♦--

INTRODUCTION

Delightful towards the galaxy regarding assessed
Java!

Building and conveying solid applications is a relic of past
times. Applications that are made out of some more
diminutive, overall characterized modules are a greatly
improved approach. By concealing outline and usage parts
that are prone to change behind a stable API, every
module is less demanding to look after, test, and get it.
This at last influences the generally maintainability and
testability of the entire application. Tragically, as of Java,
Java's inherent offices for modularity are intensely
constrained. Basic directions are modularized into
techniques, which are then modularized into classes.
Classes could be further gathered into bundles, which offer
a powerless manifestation of modularization. However that
is the place Java modularity closes. Java offers no
methods for modularizing classes or bundles of classes
into coarse-grained modules.

Where Java misses the point, Osgi steps in. Osgi is a
framework specification that carries modularity to the Java
stage. In this book we're set to see how Osgi can empower
advancement of generally characterized, approximately
coupled modules that might be gathered into complete
applications. However before we escape, we should get a
feel for the sort of issue that Osgi tackles by listening in on
a discussion between two associates on their approach to
lunch.

MODULARITY

Brian's issue is absence of modularity—or all the more
exactly, his disappointment to distinguish his auto's
modularity. Autos are not stone monuments they are made
up of a few dissimilar and distinct parts. It's regularly more
practical to swap out those parts when they need to be
displaced or redesigned than to swap out the whole auto.
Assuming that parts might be reinstated and updated in
something as unbending as a car, then why not something
so delicate as software?

I comprehend what you're considering. You're feeling that
you as of recently plan your applications to be particular.
You put your classes and interfaces into bundles
composed by their capacity. You outline your application
into utilitarian layers. You keep coupling low by abstracting
that usefulness behind interfaces. Maybe you utilize a
reliance infusion framework, for example, Spring to make it
conceivable to swap out one execution class for an
alternate. Furthermore you may have even broken your
application into two or all the more exclusively assembled
undertakings.

MODULARITY IN JAVA

Java archive (JAR) files are frequently considered the unit
of modularity in Java. Sadly, in any case, JAR files give
just a flimsy figment of modularity. A run of the mill JAR file
is truly just a sending time comfort, giving a vessel for a
given set of classes, interfaces, and different assets. As
outlined in Figure, once a JAR is put into the class path,
the JAR limits break up in addition to any thought of
modularity. All of the JAR's substance sit in the
application's class space alongside the substance of each

International Journal of Information Technology and Management

Vol. III, Issue No. I, August – 2012, ISSN 2249-4510

Available online at www.ignited.in Page 2
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

other JAR file in the class path. Hence, every open class in
the JAR file is approachable by every different class in the
class space.

Figure: The limits gave by JAR files are counterfeit
and blur away at runtime.

LAUNCHING OSGI

Osgi is a segment framework specification that carries
modularity to the Java stage. Osgi empowers the making
of remarkably firm, approximately coupled modules that
might be made into bigger applications. What's all the
more, every module might be independently created, tried,
sent, redesigned, and dealt with insignificant or no effect to
alternate modules. We should examine the elements that
make up the OSGi specification also see how they help
measured application advancement in Java.

At its least level, the Osgi specification characterizes an
organization model for Java-based modules. The unit of
arrangement in Osgi is known as a pack. Instead of make
a totally new organization instrument, Osgi powers the
existing JAR file position for groups. Osgi packs are much
like normal JAR files, with the exception of that their
META-Inf/manifest.mf file holds Osgi-specific metadata,
including an absolute name, variant, conditions, and other
sending parts.

When a pack is introduced into an Osgi framework, the
Osgi life cycle oversees the status of the group. A group
could be introduced, begun, halted, and uninstalled from
the framework, emulating the life cycle recommended by
the Osgi specification.

UNDERSTANDING THE OSGI PACKAGE

Right away that we've secured the profits of modularity
and how Osgi carries modularity to Java, now is the right
time to get down to the business of meeting expectations
with Osgi. In this section, we're set to plunge our toes into

the Osgi waters and see a portion of the fundamental stuff
that goes into building an Osgi module. This will equip us
for wading a little deeper into the waters of Osgi packages
and administrations throughout the following few sections.
Later, once we're adjusted to the basics of Osgi, we'll take
a deep swoop into Spring-DM. In the first place things to
begin with, in any case. We should begin by tinkering with
a few the most famous Osgi frameworks, Equinox and
Felix, to see what makes them tick.

All Osgi-based applications run inside an Osgi
compartment (at times known as an Osgi framework).
There are a few open source and business Osgi
compartments to browse, including the accompanying:

• Eclipse Equinox

• Apache Felix (once Object web Oscar)

• Knopflerfish

• Concierge

Each of these holders has its advantages and
disadvantages, however generally you're free to pick the
holder that you like best and that comes with a permit that
fits your needs. Equinox and Felix are presumably the two
most prevalent Osgi holders accessible, so how about we
begin by taking each of them for a test drive.

A WAB can't be a fragment group, however it can go about
as a host for other fragment groups. A fragment group
does not have its own particular class loader. All the
fragments joined to a host impart the class loader of the
host group. The Osgi specification has overall
characterized decides that represent how a fragment
Bundle-Class path is consolidated with host Bundle-Class
path to come up with the powerful Bundle-Class path.
While mapping the substance of a WAB to Web
Application, powerful Bundle-Class path is utilized, which
means Bundle-Class path of all the appended fragments
are immediately considered. Despite the fact that
fragments are not an extraordinary sample of modularity,
they can be utilized to give extra substance as examined
under.

LOOKING FOR JAR RECORDS

How often have you spent some minutes creating the
following incredible bit of software just to be gone up
against with the cryptic Class- Not Found Exception after
submitting your work to the compiler? You're a gifted Java
programmer. You know what to do, correct? The result
needed here is basically a matter of adding some JAR file
to your class path. Be that as it may which one? There are
such a variety of Java classes scattered crosswise over

International Journal of Information Technology and Management

Vol. III, Issue No. I, August – 2012, ISSN 2249-4510

Available online at www.ignited.in Page 3
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

such a large number of Java libraries, by what method
would you be able to know beyond any doubt which JAR
file you may as well include? What's more regardless of
the possibility that you think you know which JAR file is
needed, where do you head off to get it? To begin, how
about we contemplate the characteristics that the
application needs.

At an exceptionally fundamental level, we're set to need
the accompanying:

• Something that creeps around one or more Maven
archives, discovering JAR files to add to the record

• A method of indexing meta-information around a
JAR file so it might be discovered later

• Some realm object(s) that speak to the JAR file by
holding the meta-information

• An approach to question for JAR files that match
certain criteria

• A web front close with the goal that the Java-
creating masses can utilize the application to discover their
libraries

A percentage of the information that may be intriguing
around a JAR is the emulating:

• The URL of the Maven archive where the JAR was
found.

• The Maven bunch ID, curio ID, and adaptation of
the JAR.

• A rundown of the JAR's substance (e.g., a
rundown of the .class files held inside the JAR).

• It could be decent to know if the JAR is a
legitimate Osgi group (that is, does its META-
Inf/manifest.mf have a Bundle-Symbolic Name header?).

In the event that this were an ordinary application, we'd
most likely give each of the segments its own particular
bundle inside the generally application structure and call
that modularity. In the event that we're in an especially
illuminated mood, we may even bundle every segment into
its own particular JAR file that is eventually encased in the
web application's WAR file.

Anyway this isn't a normal application. So as to profit from
simplicity of organization, forming, parallel advancement,
testability, and the other temperance’s of modularity, we're
set to manufacture this application as a gathering of Osgi
groups.

As opposed to putting Maven Spider in the awkward
position of needing to deal with the comings and goings of
the file administration, we will utilize an administration
tracker. Administration trackers hold the sum of the
enchantment to keep track of if an administration is
accessible, and they stow away the unpredictability of
managing the Osgi administration registry through easier
level Apis. Expert Spider is given an administration tracker
that keeps track of the list administration also, upon appeal
through the get service () technique, gives the file benefit
so we can add a Jar file to the list.

Despite the fact that the administration tracker modified
works away any repulsiveness of managing the
administration registry's low-level Apis, get service () could
still return invalid if the administration is occupied. Thus,
we will need to check for an invalid administration before
calling add jar file (). Anyhow in the event that you'd rather
hold up for the administration to get accessible, we could
call wait for service () rather than get service ().

USING THE SERVICES OF BUNDLES

Osgi is about modularity. Also the unit of modularity in Osgi
is a group. As we've as of recently examined, Osgi groups
are little more than great dated JAR files with a tad bit of
additional information in their manifests.

We've recently made a couple of straightforward groups.
Anyhow now we're primed to turn it up a score and create
a couple of additional reasonable packages that will meet
up to structure the Dude, Where's My JAR? Application In
this section we're set to make the first package for the
application. It will be a straightforward package that
exports just a solitary bundle and does not distribute or
devour any administrations. Despite the fact that its basic,
we'll confront a few fascinating issues, incorporating how
to manage conditions on outsider JAR files that aren't
Osgi-prepared.

Glassfish Server empowers communication between Osgi
administrations and Java EE segments. This association is
bi-directional. Osgi administrations oversaw by Osgi
framework can conjure Java EE segments oversaw by
Java EE compartment and the other way around.
Application designers can definitively export Ejbs as Osgi
administrations without needing to compose any Osgi
code. That permits any immaculate Osgi part, which is
running without the Java EE connection, to uncover the
EJB and conjure it. That permits designers to compose
business parts as Ejbs so they can take preference of Java
EE stage characteristics, for example, decisive security,
transaction administration, reliance infusion, and so on.,
but then permit them to be receptive to non-Java EE
segments. Thus, Java EE parts can find Osgi

International Journal of Information Technology and Management

Vol. III, Issue No. I, August – 2012, ISSN 2249-4510

Available online at www.ignited.in Page 4
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

administrations gave by non-Java EE Osgi groups also
utilize them too. Glassfish Server augments the stage
default infusion framework called Setting and Dependency
Injection (SDI) framework to make it a great deal less
difficult for Java EE segments to expend dynamic Osgi
benefits in a type-safe manner.

We utilized Pax Construct's pax-make venture script to
make a top-level undertaking for our application.
Notwithstanding we'll utilization the pax-make pack script
to produce a group subproject to convey the dominion
questions in the application. As it stands, Jar file is a
sufficient class for holding JAR file metadata. Yet in any
case we'll need to compose the information kept in Jar file
to an list that might be looked upon. In the following part,
we'll construct the list administration, which utilizes an
open source seek framework known as Compass to do the
indexing and seeking. Meanwhile, we can go ahead and
comment the classes with information that Compass can
utilization the point when indexing a Jar file. In spite of the
fact that we don't create software ideally, trust is not lost if
your Osgi-built application depends with respect to a
library that doesn't give an Osgi pack. One approach to
alter the Compass group is to expand it, alter its manifest,
and after that reconstitute the substance go into another
JAR file. In any case that seems a touch great, especially
assuming that its a manual exertion.

Rather, how about we consider two less amazing
approaches to carry non-bundle jars into our Osgi
application:

• Embed the JAR files inside the packages that
need them.

• Wrap the JAR files with an Osgi manifest.

INTERNET FRAGMENT AND WAB

With presentation of segment characterizing annotations in
Servlet 3.0 specification, the need for the web.xml has
been diminished breathtakingly, yet some of the time it is
fundamental. Prior, web.xml used to be a solid file bundled
in WEB-INF/ catalog of the Web Application. Servlet 3.0
presents something many refer to as web-fragment.xml. It
could be thought as a coherent dividing of the web.xml. As
the name prescribes, it is a fragment of web.xml. Every
such fragment could be bundled inside a jar file in WEB-
Inf/lib. There could be a lot of people such web fragments
in a Web Application and there even exists an instrument
to request them when clashing directions are available. As
such, we have not talked about anything which makes it
any more intriguing than for the vanilla WAR file. If there
should be an occurrence of a WAB, web fragments need
not be bundled inside the WAB itself. Web fragments can

be some piece of fragment packs which can then append
to the WAB utilizing the Fragment-Host trait. As should be
obvious, this permits a much more stupendous degree of
modularity than what is offered on account of a
conventional WAR.

Web applications can additionally be introduced as
conventional Wars through a manifest reworking
methodology. Osgi Web Applications specification
characterizes a convention plan called web bundle which
might be used to introduce plain vanilla WAR files into the
Osgi runtime. The corresponding URL handler changes
the information WAR to a WAB by including vital manifest
entrances. After the change, the WAR carries on like a
WAB. The change procedure might be altered by utilization
of different question parameters in the URL. For a nitty
gritty exchange on this, please allude to the Osgi
Enterprise Specification.

As I've recently said, web groups are a peculiar breed. In
numerous ways, they look like an accepted WAR file,
however they likewise hold an Osgi-prepared manifest to
empower them to be sent in an Osgi framework. Yet in
spite of the fact that adding a manifest to a WAR file may
make it an Osgi package, that alone doesn't completely
exploit the profits of Osgi. A commonplace WAR file holds
not just the web segment of an application yet additionally
the complete purpose of the application. Regardless of the
fact that the application is created in a measured manner,
those modules wind up as JAR files.

Fragments are much like normal packages in that they are
an unit of arrangement in Osgi. They're bundled as JAR
files and are depicted in metadata in the META-
Inf/manifest.mf file. Not at all like general groups, then
again, are fragments futile independent from anyone else.
They must be associated to an alternate pack.

Think about the relationship between packs and fragments
as being similar to the relationship between a home
stimulation system and Dvds. A regular advanced home
diversion system likely incorporates in any event a
television and a DVD player. Despite the fact that the
amusement system is most likely helpful on its own for
survey telecast programs, a DVD has little utility past that
of a sparkling beverage napkin without the DVD player. By
setting the DVD into the player, you give the DVD reason
furthermore, in the meantime, augment the proficiency of
the diversion system.

SPRING IN ADDITION TO OSGI

We made the file pack, which distributes an administration
to the Osgi administration registry. Furthermore we
devoured that administration from inside the spider

International Journal of Information Technology and Management

Vol. III, Issue No. I, August – 2012, ISSN 2249-4510

Available online at www.ignited.in Page 5
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

package that slithers Maven vaults searching for JAR files.
Little doubt remains that we have the vast majority of the
pieces set up and that the main thing left to do is to
fabricate the web front close to present the application to
its clients.

However to begin with, we should consider what we
needed to do to distribute and devour administrations.
Distributed the list administration wasn't so awful we
needed to make a pack activator, however in any event
our work with the Osgi API was limited to the activator
class. Then again, in the event that you're similar to me,
you felt a spot grimy composing the Maven spider class
that managed a Service tracker to find the list
administration.

If there were somehow to compose our application code
as Pojos and afterward pronounce that they are to devour
or to be distributed as Osgi administrations.

In this section, we're set to see how to utilize Spring
Dynamic Modules for Osgi (Spring-DM) to wipe out the
sum of that Osgi-specific code that we used to distribute
and devour administrations. In the meantime we'll carry all
the force of the Spring Framework to Osgi. As opposed to
customizing to the Osgi API, as we finished in the past
part, this time we'll proclaim Spring beans to be Osgi
administrations and infuse administrations into different
beans.

Unless you've been existing under a rock or included in a
multiyear lone restriction exercise, you've most likely
caught wind of the Spring Framework. You may have even
dealt with an undertaking or two that is dependent upon
spring. It's a reality that spring has made an enormous
effect on venture Java advancement.

Spring carries a considerable measure to the table for any
application, including:

• Spring's backing for reliance infusion advertises
detached coupling what's more high testability of
application items.

• Spring's backing for aspect-turned modifying offers
engineers a chance to divide cross-cutting concerns, for
example, transactions, security, and reserving from center
application code.

• Spring makes it simple to work with JDBC and
other constancy frameworks, for example, Hibernate, JPA,
and ibatis for information constancy.

• Spring backings decisive creation and utilization of
remote administrations utilizing a mixture of removing
choices, including RMI, Hessian, Burlap, and web

administrations.

CONCLUSION

The quickened advancement of Web applications and the
quick development of partnered Web advances have
brought about a mixed bag of upkeep concerns. One of
the significant support issues is the porting and
acclimatization of existing Web applications into cutting
edge Web-based innovations. In this paper, we have
tended to this issue by applying reengineering strategies,
including the source code examination, the software
segment extraction, and the Web application re-
calculating. We proposed a framework for incrementally
moving legacy Web systems to new stages dependent
upon J2ee advances. Utilizing this framework, a source
application was refactored into JavaBeans configuration
(Model), Java server Pages configuration (View), and Java
Servlet group (Controller).

Future enlargements of the work introduced in this paper
may keep tabs on the accompanying bearings: Firstly, we
will examine the utilization of the wrapping innovation and
the connector building design so as to coordinate all others
language situations foreign made by the existing legacy
Web system. Also, the use of a software bunching method
will be inspected with the reason for recognizing strong
aggregations of Web pages. A specific grouping calculation
needs to be created keeping in mind the end goal to give
the backing to the control combination of the vagrant
applications. Thirdly, we will examine the method for
programmed usage of examining element Web parts that
must be structured at run time, for example, HTML
structure filling, and database questioning. At last, we will
deal with the era and utilization of the Undertaking Java
Beans (EJB) innovation, especially element beans, for the
back-finish execution of SQL statements.

REFERENCES

 Amanda W. Wu, Haibo Wang, and Dawn Wilkins,
“Performance Comparison of Alternative Solutions for
Web-To-Database Applications”, in Proceedings the
Southern Conference on Computing, the University of
Southern Mississippi, October 2000.

 Apache Felix OSGi implementation:
http://felix.apache.org

 Carmine Albanese, Thierry Bodhuin, Enrico
Guardabascio and Maria Tortorella, “A Toolkit for Applying
a Migration Strategy: a Case Study”, in Proceedings of the
6th European Conference on Software Maintenance and
Reengineering, 2002.

International Journal of Information Technology and Management

Vol. III, Issue No. I, August – 2012, ISSN 2249-4510

Available online at www.ignited.in Page 6
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

 Christy Lu, “A C to RPG Program Transformation
Tool”, M.Sc Project, University of Waterloo, Department of
Electrical & Computer Engineering, 1998.

 Cornelia Boldyreff and Richard Kewish, “Reverse
Engineering to Achieve Maintainable WWW sites”, IEEE
2001.

 OSGi Module System: http://www.osgi.org

 OSGi Specifications:
http://www.osgi.org/Specifications/HomePage

 Terence C. Lau, Jianguo Lu, John Mylopoulos,
Kostas Kontogiannis, “The Migration of Multi-tier E-
commerce Applications to an Enterprise Java
Environment”, Information System Frontiers, 5:2, pp. 149-
160, 2003.

 Thierry Bodhuin, Enrico Guardabascio and Maria
Tortorella, “Migrating COBOL Systems to the WEB by
using the MVC design pattern”, in Proceedings of the 9

th

Working Conference on Reverse Engineering, 2002

 Vesselin Ivanov, “Moving to a Java object
environment: Best practices of WebSphere Commerce
migration and LOQS”, December 2002.
http://cas.ibm.com/toronto /publications/TR-74.188
/27/ivanov.pdf

 Ying Zou, Kostas Kontogiannis, “A Framework for
Migrating Procedural Code to Object-Oriented Platforms”,
in Proceedings of the 8th IEEE Asia-Pacific Software
Engineering Conference, pp. 408-418, Macau, China,
December 2001.

