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Abstract – We consider cluster-based network servers in which a front-end directs inward requests to one of a 
number of back-ends. Specifically, we consider content-based request distribution: the front-end uses the 
content requested, in addition to information about the load on the back-end nodes, to choose which back-end 
will handle this request. Content-based request distribution can improve locality in the back-ends’ main memory 
caches, increase secondary storage scalability by partitioning the server’s database, and provide the ability to 
employ back-end nodes that are specialized for certain types of requests. 

------------------------------------------♦---------------------------------------------- 

INTRODUCTION 

Network servers based on clusters of commodity 
workstations or PCs connected by high-speed LANs 
combine cutting-edge performance and low cost. A cluster-
based network server consists of a front-end, responsible 
for request distribution and a number of back-end nodes, 
responsible for request processing. The use of a front-end 
makes the distributed nature of the server transparent to 
the clients. In most current cluster servers the frontend 
distributes requests to back-end nodes without regard to 
the type of service or the content requested. 

That is, all back-end nodes are considered equally capable 
of serving a given request and the only factor guiding the 
request distribution is the current load of the backend 
nodes. 

With content-based request distribution, the frontend takes 
into account both the service/content requested and the 
current load on the back-end nodes when deciding which 
back-end node should serve a given request. 

The potential advantages of content-based request 
distribution are: 

(1) Increased performance due to improved hit rates 
in the back-end‟s main memory caches, 

(2) Increased secondary storage scalability due to the 
ability to partition the server‟s database over the 
different back-end nodes and 

(3) The ability to employ back-end nodes that are 

specialized for certain types of requests (e.g., 
audio and video). 

The locality-aware request distribution (LARD) strategy 
presented in this paper is a form of content-based request 
distribution, focusing on obtaining the first of the 
advantages cited above, namely improved cache hit rates 
in the back-ends. Secondary storage scalability and 
special-purpose back-end nodes are not discussed any 
further in this paper. 

Figure 1 illustrates the principle of LARD in a simple server 
with two back-ends and three targets‟ (A, B, C) in the 
incoming request stream. The front-end directs all requests 
for A to back-end 1, and all requests for B and C to back-
end 2. By doing so, there is an increased likelihood that 
the request finds the requested target in the cache at the 
back-end. In contrast, with a round-robin distribution of 
incoming requests, requests of all three 

 

targets will arrive at both back-ends. This increases the 
likelihood of a cache miss, if the sum of the sizes of the 
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three targets, or, more generally, if the size of the working 
set exceeds the size of the main memory cache at an 
individual back-end node. 

Of course, by naively distributing incoming requests in a 
content-based manner as suggested in Figure 1, the load 
between different back-ends might become unbalanced, 
resulting in worse performance. The first major challenge 
in building a LARD cluster is therefore to design a practical 
and efficient strategy that simultaneously achieves load 
balancing and high cache hit rates on the back-ends. The 
second challenge stems from the need for a protocol that 
allows the front-end to hand off an established client 
connection to a back-end node, in a manner that is 
transparent to clients and is efficient enough not to render 
the front-end a bottleneck. This requirement results from 
the front-end‟s need to inspect the target content of a 
request prior to assigning the request to a back-end node. 
This paper demonstrates that these challenges can be 
met, and that LARD produces substantially higher 
throughput than the state-of the-art approaches where 
request distribution is solely based on load balancing, for 
workloads whose working set exceeds the size of the 
individual node caches. 

Increasing a server‟s cache effectiveness is an important 
step towards meeting the demands placed on current and 
future network servers. Being able to cache the working 
set is critical to achieving high throughput, as a state-of-
the-art disk device can deliver no more than 120 block 
requests/set, while high-end network servers will be 
expected to serve thousands of document requests per 
second. 

Moreover, typical working set sizes of web servers can be 
expected to grow over time, for two reasons. First, the 
amount of content made available by a single organization 
is typically growing over time. Second, there is a trend 
towards centralization of web servers within organizations. 
Issues such as cost and ease of administration, 
availability, security and high-capacity backbone network 
access cause organizations to move towards large, 
centralized network servers that handle all of the 
organization‟s web presence. Such servers have to handle 
the combined working sets of all the servers they 
supersede. 

With round-robin distribution, a cluster does not scale well 
to larger working sets, as each node‟s main memory cache 
has to fit the entire working set. With LARD, the effective 
cache size approaches the sum of the node cache sizes. 
Thus, adding nodes to a cluster can accommodate both 
increased traffic (due to additional CPU power) and larger 
working sets (due to the increased effective cache size). 

OBJECTIVES OF THE STUDY 

The objectives of the current study are as follows: 

1. To study practical and efficient LARD strategy that 
achieves high cache hit rates and good load 
balancing, 

2. To study an efficient TCP protocol, that enables 
content-based request distribution by providing 
client transparent connection handoff for TCP-
based network services and 

3. To study a performance evaluation of a prototype 
LARD server cluster, incorporating the TCP 
handoff protocol and the LARD strategy. 

NEED OF THE STUDY 

As a specific policy for content-based request distribution, 
we introduce a simple, practical strategy for locality-aware 
request distribution (LARD). With LARD, the front-end 
distributes incoming requests in a manner that achieves 
high locality in the back-ends‟ main memory caches as 
well as load balancing. Locality is increased by 
dynamically subdividing the server‟s working set over the 
back-ends. Trace-based simulation results and 
measurements on a prototype implementation 
demonstrate substantial performance improvements over 
state-of-the-art approaches that use only load information 
to distribute requests. On workloads with working sets that 
do not fit in a single server node‟s main memory cache, 
the achieved throughput exceeds that of the state-of-the-
art approach by a factor of two to four. 

With content-based distribution, incoming requests must 
be handed off to a back-end in a manner transparent to the 
client, after the front-end has inspected the content of the 
request. To this end, we introduce an efficient TCP hand of 
protocol that can hand off an established TCP connection 
in a client-transparent manner. 

HYPOTHESIS OF THE STUDY 

The following hypothesis holds for a request distribution 
strategies considered in this paper: 

1. The front-end is responsible for handing off new 
connections and passing incoming data from the 
client to the back-end nodes. As a result, it must 
keep track of open and closed connections, and it 
can use this information in making load balancing 
decisions. The frontend is not involved in handling 
outgoing data, which is sent directly from the back-
ends to the clients. 
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2. The front-end limits the number of outstanding 
requests at the back-ends. This approach allows 
the frontend more flexibility in responding to 
changing load on the back-ends, since waiting 
requests can be directed to back-ends as capacity 
becomes available. In contrast, if we queued 
requests only on the back-end nodes, a slow node 
could cause many requests to be delayed even 
though other nodes might have free capacity. 

REVIEW OF RELATED LITERATURE 

Much current research addresses the scalability problems 
posed by the Web. The work includes cooperative caching 
proxies inside the network, push-based document 
distribution and other innovative techniques. Our proposal 
addresses the complementary issue of providing support 
for cost-effective, scalable network servers. 

Robinson (2011) studied network servers based on 
clusters of workstations are starting to be widely used. 
Several products are available or have been announced 
for use as frontend nodes in such cluster servers. To the 
best of our knowledge, the request distribution strategies 
used in the cluster front-ends are all variations of weighted 
round-robin, and do not take into account a request‟s 
target content. An exception is the Dispatch product by 
Resonate, Inc., which supports content-based request 
distribution. The product does not appear to use any 
dynamic distribution policies based on content and no 
attempt is made to achieve cache aggregation via content-
based request distribution. 

Hunt et al. 2009 proposed a TCP option designed to 
enable content-based load distribution in a cluster server. 
The design has not been implemented and the 
performance potential of content-based distribution has not 
been evaluated as part of that work. Also, no policies for 
content-based load distribution were proposed. 

Our TCP handoff protocol design was informed by Hunt et 
al.„s design, but chooses the different approach of layering 
a separate handoff protocol on top of TCP. 

Fox et al. 2010 report on the cluster server technology 
used in the Inktomi search engine. The work focuses on 
the reliability and scalability aspects of the system and is 
complementary to our work. The request distribution policy 
used in their systems is based on weighted round Round-
robin. 

Loosely-coupled distributed servers are widely deployed 
on the Internet. Such servers use various techniques for 
load balancing including DNS round-robin, 

Carter (2010) observed that HTTP client re-direction, 
Smart clients, source based forwarding and hardware 
translation of network addresses have problems related to 
the quality of the load balance achieved and the increased 
request latency. 

Damani et al. 2011 IBM‟s Lava project loses the concept, 
of a “hit server”. The hit server is a specially configured 
server node responsible for serving cached content. Its 
specialized OS and client-server protocols give it superior 
performance for handling HTTP requests of cached 
documents, but limits it to private intranets. Requests for 
uncached documents and dynamic content are delegated 
to a separate, conventional HTTP server node. 

Johnson (2008) shares some of the the goals, but 
maintains standard client-server protocols, maintains 
support for dynamic content generation and focuses on 
cluster servers. 

The LARD strategies result in a good combination of load 
balancing and locality. In addition, the strategies outlined 
above have while (true) 

fetch next request r; 

if serverSet[r.target] = 0 then 

n, serverSet[r.target] t {least loaded node}; 

else 

n t {least loaded node in serverSet[r.target]}; 

m t {most loaded node in serverSet[r.target]}; 

if (n.load > Thtgh && 3 node with load < Ti,,) 11 

nload > 2 Thrgh then 

p t {least loaded node}; 

add p to serverSet[r.target]; 

n + P; 

if ]serverSet[r.target]] > 1 && 

time0 - serverSet[r.target].lastMod > K then 

remove m from serverSet[r.target]; 

send r to n 

if serverSet[r.target] changed in this iteration then 

serverSet[r.target].lastMod t time(); 
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several desirable features. 

First, they do not require any extra communication 
between the front-end and the back-ends. Second, the 
front-end need not keep track of any frequency of access 
information or try to model the contents of the caches of 
the back-ends. In particular, the strategy is independent of 
the local replacement policy used by the back-ends. Third, 
the absence of elaborate state in the front-end makes it 
rather straightforward to recover from a back-end node 
failure. The front-end simply re-assigns targets assigned to 
the failed back-end as if they had not been assigned 
before. For all these reasons, we argue that the proposed 
strategy can be implemented without undue complexity. 

In a simple implementation of the two strategies, the size 
of the server or server-set arrays, respectively, can grow to 
the number of targets in the server‟s database. 

Despite the low storage overhead per target, this can be of 
concern in servers with very large databases. In this case, 
the mappings can be maintained in an LRU cache, where 
assignments for targets that have not been accessed 
recently are discarded. Discarding mappings for such 
targets is of little consequence, as these targets have most 
likely been evicted from the back-end nodes‟ caches 
anyway. 

RESEARCH METHODOLOGY 

The input to the simulator is a stream of tokenized target 
requests, where each token represents a unique target 
being served. Associated with each token is a target size 
in bytes. This tokenized stream can be synthetically 
created, or it can be generated by processing logs from 
existing web servers. 

The individual processing steps for a given request must 
be performed in sequence, but the CPU and disk times for 
differing requests can be overlapped. Also, large file reads 
are blocked, such that the data transmission immediately 
follows the disk read for each block. 

Multiple requests waiting on the same file from disk can be 
satisfied with only one disk read, since all the requests can 
access the data once it is cached in memory. 

The costs for the basic request processing steps used in 
our simulations were derived by performing measurements 
on a 300 Mhz Pentium 11 machine running FreeBSD 2.2.5 
and an aggressive experimental web server. Connection 
establishment and teardown costs are set at 145~s of CPU 
time each, while transmit processing incurs 40~s per 512 
bytes. Using these numbers, an 8 KB document can be 
served from the main memory cache at a rate of 

approximately 1075 requests/set. 

If disk access is required, reading a file from disk has a 
latency of 28 ms (2 seeks + rotational latency). The disk 
transfer time is 410~s per 4 KB (resulting in approximately 
10 MB/set peak transfer rate). For hales larger than 44 KB, 
an additional 14 ms (seek plus rotational latency) is 
charged for every 44 KB of file length in excess of 44 K. 44 
KB was measured as the average disk transfer size 
between seeks in our experimental server. Unless 
otherwise stated, each back-end node has one disk. 

Figures 2 and 3 show the cumulative distributions of 
request frequency and size for the Rice University trace 
and the IBM trace, respectively. Shown on the x-axis is the 
set of target files in the trace, sorted in decreasing order of 
request frequency. The y-axis shows the cumulative 
fraction of requests and target sizes, normalized to the 
total number of requests and total data set size, 
respectively. The data set for the Rice University trace 
consist of 37703 targets covering 1418 MB of space, 
whereas the IBM trace consists of 38527 targets and 1029 
MB of space. While the data sets in both traces are of a 
comparable size, it is evident from the graphs that the Rice 
trace has much less locality than the IBM trace. In the Rice 
trace, 560/705/927 MB of memory is needed to cover 99% 
of all requests, respectively, while only 51/80/182 MB are 
needed to cover the same fractions of requests in the IBM 
trace. 

This difference is likely to be caused in part by the different 
time spans that each trace covers. Also, the IBM trace is 
from a single high-traffic server, where the content 
designers have likely spent effort to minimize the sizes of 
high frequency documents in the interest of performance. 
The Rice trace, on the other hand, was merged from the 
logs of several departmental servers. 

The cache replacement policy we chose for all simulations 
is Greedy-Dual-Size (GDS), as it appears to be the best 
known policy for Web workloads. We have also performed 
simulations with LRU, where files with a size of more than 
500KB are never cached. The relative performance of the 
various distribution strategies remained largely unaffected. 
However, the absolute throughput results were up to 30% 
lower with LRU than with GDS. 

As with all caching studies, interesting effects can only be 
observed if the size of the working set exceeds that of the 
cache. Since even our larger trace has a relatively small 
data set (and thus a small working set) and also to 
anticipate future trends in working set sizes, we chose to 
set the default node cache size in our simulations to 32 
MB. Since in reality, the cache has to share main memory 
with OS kernel and server applications, this typically 
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requires at least 64 MB of memory in an actual server 
node. 

SIMULATION INPUTS 3.3 SIMULATION OUTPUTS 

The input to the simulator is a stream of tokenized target 
requests, where each token represents a unique target.  
The simulator calculates overall throughput, hit rate, and 
underutilization time. 

 

Throughput is the number of request in the trace that were 
served per second by the entire cluster, calculated as the 
number of requests in the trace divided by the simulated 
time it took to finish serving all the requests in the trace. 
The request arrival rate was matched to the aggregate 
throughput of the server. 

The cache hit ratio is the number of requests that hit in a 
back-end node‟s main memory cache divided by the 
number of requests in the trace. The idle time was 
measured as the fraction of simulated time during which a 
back-end node was underutilized, averaged over all back-
end nodes. 

In addition, observing the large amount of interest 
generated by global memory systems (GMS) and 
cooperative caching to improve hit rates in cluster main 
memory caches, we simulate a weighted round-robin 
strategy in the presence of a global memory system on the 
back-end nodes. 

We simulate an idealized locality-based strategy, termed 
LB/GC, where the front-end keeps track of each back-
end‟s cache state to achieve the effect of a global cache. 
On a cache hit, the front-end sends the requests to the 
back-end that caches the target. On a miss, the front-end 
sends the request to the back-end that caches the globally 
“oldest” target, thus causing eviction of that target. 

 

LARD/R over LARD increases with CPU speed, even on a 
workload that presents little opportunity for replication. 

 

To study various request distribution policies for a range of 
cluster sizes under different assumptions for CPU speed, 
amount of memory, number of disks and other parameters, 
we developed a configurable web server cluster simulator. 
We also implemented a prototype of a LARD-based 
cluster. 

The simulation model is depicted in Figure 4. Each back-
end node consists of a CPU and locally-attached disk(s), 
with separate queues for each. In addition, each node 
maintains its own main memory cache of configurable size 
and replacement policy. For simplicity, caching is 
performed on a whole-file basis. 

Processing a request requires the following steps: 
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connection establishment, disk reads (if needed), target 
data transmission, and connection teardown. The 
assumption is that front-end and networks are fast enough 
not to limit the cluster‟s performance, thus fully exposing 
the throughput limits of the back-ends. Therefore, the front-
end is assumed to have no overhead and all networks 
have infinite capacity in the simulations. 

Associated with each token is a target size in bytes. This 
tokenized stream can be synthetically created, or it can be 
generated by processing logs from existing web servers. 

The individual processing steps for a given request must 
be performed in sequence, but the CPU and disk times for 
differing requests can be overlapped. Also, large file reads 
are blocked, such that the data transmission immediately 
follows the disk read for each block. 

Multiple requests waiting on the same file from disk can be 
satisfied with only one disk read, since all the requests can 
access the data once it is cached in memory. 

The costs for the basic request processing steps used in 
our simulations were derived by performing measurements 
on a 300 Mhz Pentium 11 machine running FreeBSD 2.2.5 
and an aggressive experimental web server. Connection 
establishment and teardown costs are set at 145~s of CPU 
time each, while transmit processing incurs 40~s per 512 
bytes. Using these numbers, an 8 KB document can be 
served from the main memory cache at a rate of 
approximately 1075 requests/set. 

If disk access is required, reading a file from disk has a 
latency of 28 ms (2 seeks + rotational latency). The disk 
transfer time is 410~s per 4 KB (resulting in approximately 
10 MB/set peak transfer rate). For hales larger than 44 KB, 
an additional 14 ms (seek plus rotational latency) is 
charged for every 44 KB of file length in excess of 44 KB. 
44 KB was measured as the average disk transfer size 
between seeks in our experimental server. Unless 
otherwise stated, each back-end node has one disk. 

CONCLUSION 

We present and evaluate a practical and efficient locality-
aware request distribution (LARD) strategy that achieves 
high cache hit rates and good load balancing in a cluster 
server. Trace-driven simulations show that the 
performance of our strategy exceeds that of the state-of-
the-art weighted round-robin (WRR) strategy substantially. 
On workloads with a working set that does not fit in a 
single server node‟s main memory cache ,the achieved 
throughput exceeds that of WRR by a factor of two to four. 

Additional simulations show that the performance 

advantages of LARD over WRR increase with the disparity 
between CPU and disk speeds. Also, our results indicate 
that the performance of a hypothetical cluster with WRR 
distribution and a global memory system (GMS) falls short 
of LARD under all workloads considered, despite generous 
assumptions about the performance of a GMS system. 

We also propose and evaluate an efficient TCP handoff 
protocol that enables LARD and other content based 
request distribution strategies by providing client 
transparent connection handoff for TCP-based network 
services, like HTTP. Performance results indicate that in 
our prototype cluster environment and on our workloads, a 
single CPU front-end can support 10 back-end nodes with 
equal CPU speed as the front-end. Moreover, the design 
of the handoff protocols is expected to yield scalable 
performance on SMP-based front-ends, thus supporting 
larger clusters. 

Finally, we present performance results from a prototype 
LARD server cluster that incorporates the TCP handoff 
protocol and the LARD strategy. The measured results 
confirm the simulation results with respect to the relative 
performance of LARD and WRR. 

In this paper, we have focused on studying HTTP servers 
that serve static content. However, caching also be 
effective for dynamically generated content. 

Moreover, resources required for dynamic content 
generation like server processes, executables, and 
primary data files are also cacheable. While further 
research is required, we expect that increased locality can 
benefit dynamic content serving, and that therefore the 
advantages of LARD also apply to dynamic content. 
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