

International Journal of Information Technology and Management

Vol. III, Issue No. I, August – 2012, ISSN 2249-4510

Available online at www.ignited.in Page 1
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

“Useful Activities and Challenges of Effectiveness
Automated Software Testing”

Latharani T R

Research Scholar

Abstract – The design of an appropriate test suite for software testing is a challenging task. It requires a suitable
tradeoff between effectiveness, e.g., a sufficient amount of test cases to satisfy the test goals of a given coverage
criterion, and efficiency, e.g., a redundancy-reduced selection of test cases. In this paper we discussed activities
and challenges of effectiveness automated software testing.

Keyword: Activities, Challenges, Automated Software Testing

--♦--

INTRODUCTION

Automation testing is used to rerun the test scenarios that
were performed manually, quickly and repeatedly.
Automation testing which is also known as test automation
is when the tester writes scripts and uses software to test
the software. This process involves automation of a
manual process.

Test automation has often been touted as an important
part of an organization's quality strategy.

Apart from regression testing, Automation testing is also
used to test the application from load, performance and
stress point of view. It increases the test coverage;
improve accuracy, saves time and money in comparison to
manual testing.

Test automation has always been an attractive alternative
to expensive, time consuming and inconsistent manual
testing. Key program factors include: the development
paradigm, the quality objectives, and your deployment
velocity. When, how and how much test automation to
apply against a program is dependent on these factors -
the return on investment must align with these factors;
otherwise, the long-term success of the test automation
effort will be in jeopardy and almost certainly fail. The most
common key program factors are:

 Development paradigm (Agile, non-Agile,
instrumented, non-instrumented)

 Quality objectives (defect escape velocity)

 Target deployment velocity (volume of
new/enhanced functionality per release)

REVIEW OF LITERATURE:

Software permeates many aspects of our life; thus,
improving software reliability is becoming critical to society.
A recent report by National Institute of Standards and
Technology found that software errors cost the U.S.
economy about $60 billion each year [1]. Although much
progress has been made in software verification and
validation, software testing is still the most widely used
method for improving software reliability. However,
software testing is labor intensive, typically accounting for
about half of the software development effort [2].

To reduce the laborious human effort in testing, developers
can conduct automated software testing by using tools to
automate some activities in software testing. Software
testing activities typically include generating test inputs,
creating expected outputs, running test inputs, and
verifying actual outputs. Developers can use some existing
frameworks or tools such as the Unit testing framework [3]
to write unit-test inputs and their expected outputs. Then
the Unit framework can automate running test inputs and
verifying actual outputs against the expected outputs. To
reduce the burden of manually creating test inputs,
developers can use some existing test-input generation
tools [4-6] to generate test inputs automatically. After
developers modify a program, they can conduct regression
testing by rerunning the existing test inputs in order to
assure that no regression faults are introduced. Even
when expected outputs are not created for the existing test
inputs, the actual outputs produced by the new version can

http://www.ignited.in/

International Journal of Information Technology and Management

Vol. III, Issue No. I, August – 2012, ISSN 2249-4510

Available online at www.ignited.in Page 2
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

be automatically compared with the ones produced by the
old version in order to detect behavioral differences.

ACTIVITIES AND CHALLENGES OF AUTOMATED
SOFTWARE TESTING:

Software testing activities consist of four main steps in
testing a program: generating test inputs, generating
expected outputs for test inputs, run test inputs, and verify
actual outputs. To reduce the laborious human effort in
these testing activities, developers can automate these
activities to some extent by using testing tools. Our
research focuses on developing techniques and tools for
addressing challenges of automating three major testing
activities: generating test inputs, generating expected
outputs, and verifying actual outputs, particularly in the
absence of specifications, because specifications often do
not exist in practice. The activities and challenges of
automated software testing are described below.

GENERATE (SUFFICIENT) TEST INPUTS:

Test-input generation often occurs when an
implementation of the program under test is available.
However, before a program implementation is available,
test inputs can also be generated automatically during
model-based test generation [19,20] or manually during
test-driven development [6], a key practice of Extreme
Programming [7]. Because generating test inputs manually
is often labor intensive, developers can use test-
generation tools [4-6] to generate test inputs automatically
or use measurement tools [10-12] to help developers
determine where to focus their efforts. Test inputs can be
constructed based on the program’s specifications, code
structure, or both. For an object-oriented program such as
a Java class, a test input typically consists of a sequence
of method calls on the objects of the class.

CONCLUSION:

Activities ultimately result in some action, which is some
set of pure computation. An important fact about the
collaboration and activity diagrams is that they are most
useful for constructing executable systems through
forward and reverse engineering [13].

REFERENCES:

1. National Institute of Standards and Technology.
The economic impacts of inadequate infrastructure
for software testing. Planning Report 02-3, May
2002.

2. Boris Beizer. Software Testing Techniques.
International Thomson Computer Press, 1990.

3. Erich Gamma and Kent Beck. JUnit, 2003.
http://www.junit.org.

4. Parasoft Jtest manuals version 4.5. Online
manual, April 2003. http://www. parasoft.com/.

5. Christoph Csallner and Yannis Smaragdakis.
JCrasher: an automatic robustness tester for Java.
Software: Practice and Experience, 34:1025–

1050, 2004.

6. Agitar Agitatior 2.0, Novermber 2004.
http://www.agitar.com/.

7. Kent Beck. Extreme programming explained.

Addison-Wesley, 2000.

8. Quilt 0.6a, October 2003.
http://quilt.sourceforge.net/.

9. Jcoverage 1.0.5, 2003. http://jcoverage.com/.

10. Susan B. Horwitz. Tool support for improving test
coverage. In Proc. 11th European Symposium on
Programming, pages 162–177, Grenoble, France,

April 2002.

11. Alain Faivre and Jeremy Dick. Automating the
generation and sequencing of test cases from
model-based specifications. In Proc. 1st
International Symposium of Formal Methods.
Europe on Industrial-Strength Formal Methods,
pages 268–284, London, UK, 1993.

12. Wolfram Schulte, Yuri Gurevich, Wolfgang
Grieskamp, and Margus Veanes. In Proc.
International Symposium on Software Testing and
Analysis, pages 112 to 122 – 2002

13. G. Booch, J. Rumbaugh, and I. Jacobson, the
Unified Modeling Language User Guide. Addison-
Wesley, 2001.

http://www.ignited.in/

