
[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August , 2011

 ISSN-2230-9659

1 www.ignited.in

Complete Oops and Oops Based Languages

A Critical Analysis Comparison

__

Gurjot Kaur
Research Scholar, Manav Bharti University,

H.P., India

ABSTRACT:-

Software engineers are being forced to become multi-lingual. Any of you who have had the

pleasure of creating a web site know this. Reading this article will be something like that. I freely

swap between C++ and Java throughout. Those of you who are not familiar with Java need not

fear, you will find the syntax to be very similar to C++. However, for serious readers, a Java

reference guide might be a good thing to have nearby. Fortunately, the entire API for the current

release of Java is on-line at www.javasoft.com/products/JDK/ CurrentRelease/api/. I want to make

it very clear this is not a diatribe against one language or another. I happen to like both Java and

C++ quite a bit. I have been a long time programmer in C++, and have just begun to program in

Java. I find programming in Java to be a joy. But then, I find programming in any language to be a

joy, even JCL ; -).

http://www.javasoft.com/products/JDK/

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August , 2011

 ISSN-2230-9659

2 www.ignited.in

This paper is simply a discussion of the differences in the two languages. I will not be

commenting heavily upon deficiencies in C++. These are already very well documented (see Ian

Joyner's famous critique of C++. For a copy write to: ian@syacus.acus.oz.au) I will, however, be

commenting about both the good and bad points that I perceive in Java. When I have good things

to say, this should not be taken as a recommendation of Java. By the same token, when I have bad

things to say, this should not be taken as a admonition against the use of Java. In both cases, it is

just me venting my opinion. Nothing more.

Up front, I'll say that I am looking forward to writing lots of neat Java applications and applets.

But that I am not going to give up C++ any time soon either.

MULTIPLE INHERITANCE

The designers of Java avoided multiple inheritance. Replacing it is multiple conformance to

interfaces. In Java, there is a structure called an "Interface". A Java interface is almost identical to

a C++ class that has nothing but pure virtual functions. In Java, you cannot inherit from more than

one base class; even if the base classes have nothing but abstract methods (pure virtual functions).

However you can "implement" more than one "interface"; which amounts to the same thing.

This structure is roughly identical to the following C++ code:

For example.

In Java you can create the interface for a Stack as follows:

mailto:ian@syacus.acus.oz.au

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August , 2011

 ISSN-2230-9659

3 www.ignited.in

However, a Java interface is not a class. The functions declared within a Java interface cannot be

implemented within that interface. Moreover, a Java interface cannot have any member variables.

Because interfaces cannot have function implementations or data members, multiple

implementation of interfaces does not lead to the problems that caused "virtual" inheritance to be

added to C++. That is, in Java there is no need for virtual inheritance since it is impossible to

inherit the same member variable from more than one path.

In C++, these such situations arise from the so-called deadly diamond of death. See Figure 1.

Figure 1: Deadly Diamond of Death

This UML 9.1 diagram shows four classes arranged in the diamond structure that creates the need

for virtual inheritance. Both of the classes B and C inherit from class A. D multiply inherits from

both B and C. Two problem arise from this. First, which implementation of the 'f' function does D

inherit? Should it inherit B::f() or C::f(). In C++ the answer turns out to be neither. D::f() must be

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August , 2011

 ISSN-2230-9659

4 www.ignited.in

declared and implemented. This eliminates the ambiguity, and certainly this simple rule could

have been adopted in Java.

The second problem, however, is quite a bit more complicated. The class A has a member variable

named i. Both classes B and C inherit this member variable. Since D inherits from both B and C

we face an ambiguity. On the one hand, we might want B::i and C::i to be separate variables in D;

thus creating two copies of A in D. On the other hand we might want a single copy of A in D so

that only A::i exists in D.

In C++ we choose between these two options by varying the kind if inheritance we use. If we want

two copies of A in D, then we use regular inheritance from B to A and from C to A. If, however,

we want only one copy of A in D, then we use virtual inheritance from B to A and from C to A.

Virtual inheritance is a complex feature and creates problems for compiler implementers and

application programmers alike. The designers of Java did not want to have to deal with this issue.

So by disallowing multiple inheritance of classes, and only allowing the multiple implementation

of interfaces, they set the language up such that the deadly diamond of death (DDD) cannot be

created.

This was probably a good trade-off. In all likelihood it has simplified the language appreciably.

However, it has left a problem. It prevents us from inheriting implementation from more than one

class in cases where the DDD does not appear. This is unfortunate since it is often the case that we

want to inherit from more than one base class which has functions and data.

For example, consider the following C++ program that uses the OBSERVER pattern
1
.

We have a Clock class that understands the mathematics of time, and which receives a 'Tick' event

once per second. We would like to create a version of this class that is observed. That is, we want

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August , 2011

 ISSN-2230-9659

5 www.ignited.in

to be able to inform other classes when the state of the Clock class has changed. For this, we use

the OBSERVER pattern.

The OBSERVER pattern involves two base classes. One is called Observer; it is an abstract base

class with one pure virtual function: Any class that wants to be informed when the state of an

observed class changes must inherit from Observer.

The class that forms the other half of the OBSERVER pattern is named Subject. The Subject class

maintains a list of Observer instances and has two concrete functions. The first function, Register,

allows instances of Observer to be added to the list. The second function, Notify, is called when

there is a state change that needs reporting. This function calls Update on all the registered

Observer instances.

If you want to create a class that observes state changes in another class, the observing class must

inherit from Observer. The observed class must inherit from Subject. The observer class must be

registered with the subject class. And the subject class must call Notify when its state is changed.

Back to the clock problem. Not all applications are interested in observing our Clock class; so we

don't want to have Clock inheriting from Subject. If we did, then every application would be

forced to include the Subject class, even though it didn't need it.

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August , 2011

 ISSN-2230-9659

6 www.ignited.in

To prevent Subject from existing in every application that uses Clock, we employ multiple

inheritance. We create an new class called ObservedClock that inherits from both Subject and

Clock.

This use of multiple inheritance in C++ yields a simple and elegant solution to our problem. Clock

is still free to be used in applications that don't need Subject. Those applications that want to

observe clock objects can use ObservedClock.

In Java one cannot do this. Rather one must do the following:

The Clock class is not surprising. The Observer is very similar to the C++ version. In Java it is an

interface, whereas in C++ it was a class with nothing but pure virtual functions. However the

Subject class is quite different. In Java it too is an interface. But in C++ it was a concrete class

with member variables and implemented functions. The implementation of the Subject interface is

accomplished in a class named Subject Impl

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August , 2011

 ISSN-2230-9659

7 www.ignited.in

We can see that this is very similar to the C++ version. However Java does not allow multiple

inheritance like C++ does, so we have a problem We cannot inherit from both Clock and

SubjectImpl. Instead, we must inherit from Clock and implement the Subject interface. This

amounts to multiple inheritance of interface since the ObservedClock class has the union of the

Clock and Subject interface

Notice what we had to do. We had to implement the Subject interface by creating a member that

points to a SubjectImpl. We then had to delegate every Subject interface to that contained

SubjectImpl.

This use of aggregation instead of multiple inheritance is inconvenient to say the least, especially

when it must be used with a pattern that is a prevalent as OBSERVER.

This leads me to believe that the Java language will either need a more complete form of multiple

inheritance, *or* it will need some new syntax that allows the compiler to automatically delegate.

e.g.

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August , 2011

 ISSN-2230-9659

8 www.ignited.in

This proposed delegates To syntax would automatically cause Observed Clock to implement the

interface of Subject Impl as well as automatically forwarding all calls to that interface to an

automatically contained instance of Subject Impl.

MEMORY MANAGEMENT

Java uses garbage collection. Garbage collection is a scheme of memory management that

automatically frees blocks of memory sometime after all references to that memory have been

redirected. For example, consider the following snippet of Java:

In this example, we create a new Clock object using the keyword: new. The new object is referred

to by the variable 'c'. Note that 'c' is rather like a reference variable in C++; however in Java it is

possible to reassign references. We use the new Clock object through its reference variable 'c' for

awhile. Then, when we are done with it, we redirect 'c' to null. When the Java runtime system

detects that there are no more reference variables referring to the Clock object, it classifies that

object as "garbage". At some later time, the Java runtime system will clean up that "garbage"

returning its memory to the heap.

Garbage collection makes certain kinds of applications much easier to program. The designers of

those programs need not worry as much about cleaning up after "dead" memory. As a result, C++

is often criticized for its lack of GC. However, many people have added garbage collectors to

C++. some of these are available as third party products, or as shareware on the net. These

collectors are far from perfect, but they can be used when convenient.

The corresponding statement cannot be made for Java. There is no way that this humble writer

could discover to manage memory manually. Apparently, you cannot write your own memory

manager and construct objects within the memory that it controls.

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August , 2011

 ISSN-2230-9659

9 www.ignited.in

There is a sound reason for this. Any memory management scheme that allows a program to hold

pointers or references to unused space allows certain security violations. For example, consider

the following program in C++:

The last function called: Search For Passwords In Separate Thread returns immediately. However

it also starts a new thread that continuously scans the megabyte pointed to by p. since this

megabyte has been returned to the heap already, it will be used by lots of other functions in the

system. It is just possible that it might be used to hold a password, or some other security sensitive

material. This material is open to examination by any function that holds a dead pointer into the

heap.

Thus, any form of manual memory management that involves holding on to dead pointers or

references could result in a security breach. In the typical Java environment, security is a serious

concern. Java applets are often downloaded and run in web browsers. The users may have no idea

what applets are running because of their browsing activities. If manual memory management

were allowed, it might be possible for unscrupulous people to put up web pages that contained

insecure applets. These applets would be downloaded into the systems of unsuspecting users who

happened to browse that page. Once downloaded those applets could then transmit private

information back to the author of the web page.

Is the lack of manual memory management in Java a problem? In most cases no. However, the

lack of manual memory management makes Java a difficult language to use in applications that

have hard real-time constraints. The problem is that it is very difficult to predict when the garbage

collector will run. When it does run, it can use of significant amounts of CPU time. Consider the

following Java snippet:

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August , 2011

 ISSN-2230-9659

10 www.ignited.in

Here we have a function that must complete in 500|i s. This is a typical constraint in a hard real

time system. Those functions that call RealTime.Do() depend on the fact that it will take no longer

than 500|i s to execute. In many cases, this is a hard constraint that must be met every time Do() is

called. However, every once in awhile the Java runtime system will be unable to allocate the new

Clock object until it has collected garbage and returned unused memory to the heap. There is no

telling how long this collection will take. And so, under these circumstances, RealTime.Do()

cannot meet its real-time constraints.

One cannot simply follow James Gosling's and Ken Arnold's advice when they say: "[Garbage

Collection] can interfere with time critical applications. You should design systems to be judicious

in the number of objects they create."
1
 Instead, in time critical applications, you must design ways

in which the memory you need can be made available without the possibility of incurring a

garbage collection. One simple strategy is as follows:

Here we have created a simple memory manager. It manages Clock objects. If you need a Clock

object you simply call Get Clock(). When you are done with it you call Free Clock(). It creates 10

Clock objects for this purpose and holds them in reserve. If more than 10 Clock objects are

needed, an exception will be thrown by the Stack when it underflows.

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August , 2011

 ISSN-2230-9659

11 www.ignited.in

One might think that this solves the problem. Now the Real Time class could be written as

follows:

However, we are fiddling with the java. util. Stack class within Clock Pool! It is

possible that its activities might force a garbage collection? This train of thought will quickly

convince us that using any of the Java standard library within time critical applications can lead to

garbage collection.

It should be clear that using Java in hard real-time applications presents some interesting

challenges. Caveat Emptor.

EXCEPTIONS AND 'FINALLY'

I am very pleased with the exception mechanism in Java. Although modeled after the C++

mechanism, it avoids some of C++s more severe problems by using the 'finally' clause.

In C++, when an exception leaves the scope of a function, all objects that are allocated on the

stack are reclaimed, and their destructors are called. Thus, if you want to free a resource or

otherwise clean something up when an exception passes by, you must put that code in the

destructor of an object that was allocated on the stack. For example:

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August , 2011

 ISSN-2230-9659

12 www.ignited.in

In this example, the Deallocator<Clock> object is responsible for deleting the instance of Clock

that was allocated on the heap. Whenever 'dc' goes out of scope, either because 'f' returns, or

because an exception is thrown, the destructor for 'dc' will be called and the Clock instance will be

returned to the heap.

This is artificial, error prone, and inconvenient. Moreover there are some really nasty issues

having to do with throwing exceptions from constructors and destructors that make exceptions in

C++ a difficult feature to use well. For more details on the traps and pitfalls of C++ exceptions, I

recommend that you read the excellent series of Leading Edge columns by Jack Reeves that have

appeared over the past year in C++ Report.

Now I am not going to claim that Java has fixed all these things. However, I like their solution

better than the C++ solution. Every try block can have a 'finally' clause. Any time such a block is

exited, regardless of the reason for that exit (e.g. execution could proceed out of the block, or an

exception could pass through it) the code in the finally clause is executed.

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August , 2011

 ISSN-2230-9659

13 www.ignited.in

The above Java snippet shows an example of the finally clause. The method Exclusive sets a

semaphore and then continues to execute. The finally clause frees the semaphore either when the

try block exists, or if an exception is thrown.

In many ways, this scheme seems superior to the C++ mechanism. Cleanup code can be directly

specified in the finally clause rather than artificially put into some destructor. Also, the cleanup

code can be kept in the same scope as the variables being cleaned up. In my opinion, this often

makes Java exceptions easier to use than C++ exceptions. The main downside to the Java

approach is that it forces the application programmer to (1) know about the release protocol for

every resource allocated in a block and to (2) explicitly handle all cleanup operations in the finally

block. Nevertheless, I think the C++ community ought to take a good hard look at the Java

solution.

THREADS

An in-depth discussion of Java threads is beyond the scope of this article. For more information on

Java threads I recommend that you read Doug Lea's new book
1
 [Editors note: the article

"Experiences Converting C++ Communication software Frameworks to Java" by Jain and schmidt

in this issue also discusses Java threading in more detail.] I will return to this topic in a subsequent

article. suffice it to say that I am overjoyed with the way that threads have been implemented in

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August , 2011

 ISSN-2230-9659

14 www.ignited.in

Java. The implementation is minimal and elegant. The simple way that methods can be protected

from concurrent update, the equally simple semaphore and critical code mechanisms, the very

easy way of creating a rendezvous between two threads, all combine to make this a good language

feature.

OPERATOR OVERLOADING

While writing code in Java I have to say that I miss being able to overload operators as in C++.

This is not a critical issue, but I am disappointed.

CONCLUSION

Java is a fun language. C++ programmers should have a relatively easy time learning it, and will

find that they enjoy using it. I have noted a few problems with the language in the above paper,

but I don't consider these to be very critical issues. Moreover, I don't know of any language that

doesn't have such problems. Language design always involves trade-offs that displease someone.

I look forward to writing lots of interesting Java applications. I also look forward to watching how

the language evolves from this point onward. I expect to see some changes in the next few years.

BIBLIOGRAPHY

 "The Java Tutorials: Passing Information to a Method or a Constructor". Oracle. Retrieved 2010-12-07.

 Java and C++ Library a b Robert C. Martin (January 1997). "Java vs. C++: A Critical Comparison" (PDF).

 "Reference Types and Values". The Java Language Specification, Third Edition. Retrieved 9 December

2010.

 Deitel, Paul; Deitel, Harvey (2009). Java for Programmers. Prentice Hall. p. 223. ISBN 978-0-13-700129-

3. "Unlike some other languages, Java does not allow programmers to choose pass-by-value or pass-by-

reference—all arguments are passed by value. A method call can pass two types of values to a method—

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August , 2011

 ISSN-2230-9659

15 www.ignited.in

copies of primitive values (e.g., values of type int and double) and copies of references to objects

(including references to arrays). Objects themselves cannot be passed to methods."

 "Java Language Specification 4.3.1: Objects". Sun Microsystems. Retrieved 2010-12-09.

 "Java memory leaks -- Catch me if you can" by Satish Chandra Gupta, Rajeev Palanki, IBM Developer

Works, 16 Aug 2005

 Boost type traits library

 Clark, Nathan; Amir Hormati, Sami Yehia, Scott Mahlke (2007). "Liquid SIMD: Abstracting SIMD

hardware using lightweight dynamic mapping". HPCA’07: 216–227.

