

International Journal of Information Technology and Management

Vol. IV, Issue No. I, February – 2013, ISSN 2249-4510

Available online at www.ignited.in Page 1
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

“A Study on Strategies of Multi Agent System for
Decision Support System”

Paritosh Kumar Bansal

Research Scholar, CMJ University, Shillong, Meghalaya, India

Abstract – Agents are designed to be autonomous problem-solvers, possibly communicating with other agents
and users, and are therefore equipped with sufficient cognitive abilities to reason about a domain, make certain
types of decisions themselves, and perform the associated actions. In this paper, we propose to integrate agents
in a Cooperative Intelligent Decision Support System. The resulting system, called MACIDS is designed to
support operators during contingencies. During the contingency, the operators using MACIDS should be able to:
gather information about the incident location; access databases related to the incident; activate predictive
modeling programs; support analyses of the operator, and monitor the progress of the situation and action
execution.

In MACIDS the communication support enhances communication and coordination capabilities of participants. A
simple scenario is given, to illustrate the feasibility of the proposal.

We are investigating techniques for developing distributed and adaptive collections of information agents that
coordinate to retrieve, filter and fuse information relevant to the user, task and situation, as well as anticipate
user's information needs. In our system of agents, information gathering is seamlessly integrated with decision
support. The task for which particular information is requested of the agents does not remain in the user's head
but it is explicitly represented and supported through agent collaboration. In this paper we present the
distributed system architecture, agent collaboration interactions, and a reusable set of software components for
structuring agents. The system architecture has three types of agents: Interface agents interact with the user
receiving user specifications and delivering results. They acquire, model, and utilize user preferences to guide
system coordination in support of the user's tasks. Task agents help users perform tasks by formulating problem
solving plans and carrying out these plans through querying and exchanging information with other software
agents. Information agents provide intelligent access to a heterogeneous collection of information sources. We
have implemented this system framework and are developing collaborating agents in diverse complex real world
tasks, such as organizational decision making, investment counseling, health care, and electronic commerce.

The Combination between Web services and software agents provides a promising computing paradigm for
efficient service selection and integration of inter-organizational business processes. This paper proposes an
agent-based Web DSS; the main contribution of our study is to provide an efficient tool that helps users find
information resources available as an online service within Intranet. The decision-making is not only guided by
the information provided by DSS but rather than the Web technology, the process is entirely based on
communication between ISP Agents and Web agent. While negotiating compromises for conflict solving to share
common resources, decision centers use Web service to conduct various complementary tasks. To illustrate the
idea, a simple case study is given.

--♦--

INTRODUCTION

Successful Group DSS (GDSS) acts intelligently and
cooperatively in a complex domain with potentially high
data rates and makes judgments that model the very best
human technicians. It is crucial that human technicians

maintain control over the final judgments, either by
focusing the system on particular reasoning goals, or by
modifying the basic knowledge on which the systems
judgments rely. In this way, the intelligent GDSS is able to
capture the domain knowledge and provide intelligent
guidance during the process. While the data and model

International Journal of Information Technology and Management

Vol. IV, Issue No. I, February – 2013, ISSN 2249-4510

Available online at www.ignited.in Page 2
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

data manipulations are done through the DSS, decision
makers can focus solely on the process issues.

Due to the inadequate support from GDSS to model group
members commitment to achieve a common goal, the
incompleteness and rigidity of decisional models used, and
the uncertainty carried out in meeting planning, it becomes
inevitable that: 1) GDSS design is complicated enough to
discourage wide spreading of the system as long as users
are different in background, roles and interest; 2) group
dynamics is difficult to understand and consequently to
support in an adequate way; 3) group behavior is not
generalized to other groups being highly dependent by the
context of use.

Fortunately, the multi-agent system (MAS) paradigm
represents one of the most promising approaches to
address such kinds of problems. It offers a new dimension
for GDSS integration with complementary services making
easier to build complex and flexible architectures suitable
for organizational settings.

In this paper, we propose to model a group decision
support system based on multi agent architecture. The use
and the integration of software agents in the decision
support systems provide an automated, cost-effective
means for making decisions. The agents in the system
autonomously plan and pursue their actions and sub-goals
to cooperate, and Coordinate to respond flexibly and
intelligently to dynamic and unpredictable situations.

We experiment our system on a case of boiler breakdown
to detect a functioning defect of the boiler (GLZ : Gas
Liquefying Zone) to diagnose the defect and to suggest
one or several appropriate cure actions. Managing this
process is a complex activity which involves a number of
different sub-tasks: monitoring the process, diagnosing
faults, and planning and carrying out maintenance when
faults occur. In this regard, this paper applies the multi-
agent system paradigm to cooperative decision support in
a global contingency management. Multi-agent
computational environments are suitable for studying a
broad class of coordination issues involving multiple
autonomous or semiautonomous problem solving agents.

Current networking technology and the ready availability of
vast amounts of data and information on the Internet-
based Info sphere present great opportunities for bringing
to decision makers and decision support systems more
abundant and accurate information. The use of the Internet
has accelerated at an unprecedented pace.

However, effective use of the Internet by humans or
decision support machine systems has been hampered by
some dominant characteristics of the Info sphere. First,

information available from the net is unorganized, multi-
modal, and distributed on server sites all over the world.
Second, the number and variety of data sources and
services is dramatically increasing every day. Furthermore,
the availability, type and reliability of information services
are constantly changing. Third, the same piece of
information can be accessible from a variety of different
information sources. Fourth, information is ambiguous and
possibly erroneous due to the dynamic nature of the
information sources and potential information updating and
maintenance problems.

Therefore, information is becoming increasingly more
difficult for a person or machine system to collect, filters,
evaluate, and use in problem solving. As a result, the
problem of locating information sources, accessing,
filtering, and integrating information in support of decision
making, as well as coordinating information retrieval and
problem solving efforts of information sources and
decision-making systems has become a very critical task.

The notion of Intelligent Software Agents has been
proposed to address this Although a precise definition of
an intelligent agent is still forthcoming, the current working
notion is that Intelligent Software Agents are programs that
act on behalf of their human users in order to perform
laborious information gathering tasks, such as locating and
accessing information from various on-line information
sources, resolve inconsistencies in the retrieved
information, filter away irrelevant or unwanted information,
integrate information from heterogeneous information
sources, and adapt over time to their human users'
information needs and the shape of the Info sphere. Most
current agent-oriented approaches have focused on what
we call interface agents a single agent with simple
knowledge and problem solving capabilities whose main
task is information filtering to alleviate the user's cognitive
overload7;8. Another type of agent is the Soft Bot 9, a
single agent with general knowledge that performs a wide
range of user-delegated information finding tasks. We
believe that such centralized approaches have several
limitations.

A single general agent would need an enormous amount
of knowledge to be able to deal effectively with user
information requests that cover a variety of tasks. In
addition, a centralized system constitutes a processing
bottleneck and a \single point of failure". Furthermore,
unless the agent has beyond the state of the art learning
capabilities, it would need considerable reprogramming to
deal with the appearance of new agents and information
sources in the environment. Finally, because of the
complexity of the information finding and filtering task, and
the large amount of information, the required processing
would overwhelm a single agent.

International Journal of Information Technology and Management

Vol. IV, Issue No. I, February – 2013, ISSN 2249-4510

Available online at www.ignited.in Page 3
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

Another proposed solution is to use multi-agent computer
systems to access, filter, evaluate, and integrate this
information 6;10. Such multi-agent systems can
compartmentalize specialized task knowledge, organize
them to avoid processing bottlenecks, and can be built
expressly to deal with dynamic changes in the agent and
information-source landscape. In addition, Multiple
Intelligent Coordinating Agents are ideally suited to the
predominant characteristics of the Info sphere, such as the
heterogeneity of the information sources, the diversity of
information gathering and problem solving tasks that the
gathered information supports, and the presence of
multiple users with related information needs. We
therefore believe that a distributed approach is superior,
and possibly the only one that would work for information
gathering and coherent information fusion.

The context of multi-agent systems widens the notion of
intelligent agent in at least two general ways. First, an
agent's \user" that imparts goals to it and delegates tasks
can be not only a human but also another agent. Second,
an agent must have been designed with explicit
mechanisms for communicating and interacting with other
agents. Our notion is that such multi agent systems may
comprise interface agents tied closely to an individual
human's goals, task agents involved in the processes
associated with arbitrary problem-solving tasks, and
information agents that are closely tied to a source or
sources of data.

Computer technology progress has led to widespread use
of computerized support in various activities. Particularly,
traditional decision support systems (DSS) focus on
computerized support for making decision with respect to
managerial problems.

There is an emerging and fast growing interest in
computerized support systems in many other domains
such as information retrieval support systems, research
support systems, teaching and learning support systems,
computerized medical support systems, knowledge
management support systems, and many more. The
recent development of the Web generates further
momentum to the design and implementation of support
systems.

Obviously enough, there is a strong trend for studying
computerized support systems especially on Web
platforms. Research on information retrieval support
systems, research support systems, teaching and learning
support systems, decision support systems, computerized
medical support systems, and knowledge management
support systems are just some of their representatives.

Agent integration in GDSS

There is a wide range of existing application domains that
are making use of the agent paradigm and develop agent-
based systems, for example in software technology,
robotics, and complex systems. Luke et al. make a
distinction between two main Multi-Agent System (MAS)
paradigms: multi-agent decision systems and multi-agent
simulation systems. In multi-agent decision systems,
agents participating in the system must make joint
decisions as a group. In this study we focus on the first
paradigm and here in particular on the modelling of
organizations and agent communication.

MAS are software systems composed of several
autonomous software agents running in a distributed
environment. Beside the local goals of each agent, global
objectives are established committing all or some group of
agents to their completion. Some advantages of this
approach are: 1) it is a natural way for controlling the
complexity of large and highly distributed systems; 2) it
allows the construction of scalable systems since the
addition of more agents become an easy task; 3) MAS are
potentially more robust and fault-tolerant than centralized
systems.

Several agent-based systems have been developed to
support a smooth integration of software agents into
human teams. For example, Miller et al. developed a
virtual environment for battle staff training using a
knowledge-based approach to encode the roles of team
members, as well as goals, capabilities, responsibilities,
needs, situations, and activities of the entire team, sub-
teams, and individuals in the team. To describe team
structures (roles and responsibilities), teamwork process
knowledge (e.g., work flows, team plans), collaborative
decision making knowledge, communication strategies and
protocols they use a logic-based representation language
called MALLET. A complementary approach has been
proposed in the ELEVES project formerly used to host a
visiting researcher. The approach emphasizes the need to
adjust the autonomy of agents when acting as proxies for
the corresponding humans. Focusing on interaction
aspects between agents and humans, COLLAGEN was
used to build a collaborative interface agent for an air
travel application.

Decision Support System and Web Based Decision
Support System Decision Support System

Before we start with detailed aspects of the issue, it is
important to tackle the definition of decision support
systems. Decision Support Systems can be defined as
computer technology solutions that can be used to support
complex decision making and problem solving. To account
decision problems complexity and uncertainty, we
understand the DSS as a set of computer-based tools that

International Journal of Information Technology and Management

Vol. IV, Issue No. I, February – 2013, ISSN 2249-4510

Available online at www.ignited.in Page 4
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

provide decision maker with interactive capabilities. It aims
to enhance his understanding and information basis about
considered decision problem through usage of models and
data processing. The latter, in turn, allows reaching
decisions by combining personal judgment with
information provided by these tools. The classic DSS tool
design is comprised of the components for:

• Database management capabilities with access to
internal and external data, information and knowledge;

• Powerful modelling functions accessed by a model
management system; and

• User interfaces that enable interactive
communication between the user and system.

Decision Support Systems (DSSs) are interactive
computer-based systems intended to help decision makers
utilize data and models to identify and solve problems and
make decisions. The "system must aid a decision maker in
solving UN programmed, unstructured (or 'semi
structured') problems...the system must possess an
interactive query facility, with a query language that ...is
...easy to learn and use". DSSs help managers/decision
makers use and manipulate data, apply checklists and
heuristics, and build and use mathematical models.

According to Turban, a DSS has four major characteristics:
it incorporates both data and models; it is designed to
assist managers in their decision processes in semi
structured (or unstructured) tasks; it supports, rather than
replaces, managerial judgment; and its objective is to
improve the effectiveness of decisions, not the efficiency
with which decisions are being made.

According to, decision support systems fall into five
categories:

 Communications-Driven DSS – uses network and
communications technologies to facilitate collaboration and
communication;

 Data-Driven DSS – emphasizes access to and
manipulation of a time-series of internal company data and
sometimes external data;

 Document-Driven DSS – integrates a variety of
storage and processing technologies to provide complete
document retrieval and analysis;

 Knowledge-Driven - intended to suggest or
recommend actions to managers. These DSSs are
personal computer systems with specialized problem-
solving expertise;

 Model-Driven DSS or Model-oriented DSS –
emphasizes access to and manipulation of a model, e.g.
statistical, financial, optimization and/or simulation. Simple
statistical and analytical tools provide the most elementary
level of functionality.

Web-based Decision Support System - Web used
technologies are employed to improve the capacity of
decision support systems through decision models, On-
line Analysis Processing (OLAP) and data mining tools that
allow "standardized" publishing and sharing of decision
resources on the Internet. In a web-based decision support
system, all decision support related operations are
performed on a network server n order to benefit from
platform independence, shorter learning curves for already
familiar users with the Web tools and web navigation,
lower software distribution costs, ease of performing
system updates and “reusability” of decision modules and
information on the Internet through standardized protocols
and formats.

According to, the importance of using Web-based DSS
originates from the growing amount of available
information that should be identified, controlled and
accessed remotely using web based tools to support
reusability of integrated decision modules. Using such
systems, an enterprise can create survey software, Web
based forms, build document-driven DSS for requests and
approvals. They help global enterprises manage and
improve decision processes through improved efficiency,
better process control, improved customer service, more
flexible re-design, and streamlining and simplification of
business processes. Using Web-based DSS, decision-
makers can share open decision modules on the Internet
using standardized protocols such as HTTP, and a
standardized format like XML or DAML.

According to, Web-based systems are regarded as
«platforms of choice” for delivering decision support while
taking into account many technical, economic and social
considerations. The migration towards web based DSS
denotes a shift from DSS generators (that allow users to
develop specific applications characterized by limited
deployment, inflexibility) to integrated cross application
orientations that emphasize the reuse of applications and
components. By deploying Web capabilities, multiple
knowledge bases and knowledge processing techniques
can be used. The design of decision support systems has
been affected by the availability of a wide range of web
based tools, techniques and technologies. The use of web
tools are reshaping the description of relations between
information components and decision modules in a way
that affects both the physical and logical design of the
DSS, model visualization, sharability of decision modules
and the development life cycle of DSS.

International Journal of Information Technology and Management

Vol. IV, Issue No. I, February – 2013, ISSN 2249-4510

Available online at www.ignited.in Page 5
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

As a result, the underlying architecture for Web-based
DSS has moved from mainframes, to client–server
systems, to Web and network technology based
distributed systems that enable the integration of large
amounts of data and decisions support tools originating
from heterogeneous multidisciplinary sources for the
provision of value-added information using knowledge
discovery and data mining tools.

Agent Engineering

As our point of departure in structuring an agent, we use
the Task Control Architecture (TCA) 18 which we extend
and specialize for real-time user interaction, information
gathering, and decision support tasks in the Info sphere.
The control constructs available in TCA are used to
integrate, coordinate, and monitor planning and plan
execution, and to incrementally improve the efficiency and
robustness of the multi-agent information system. These
control constructs are part of the reusable agent
architecture. The overall architectural design of a TCA-
based agent is shown in Figure 1.

The planning module takes as input a set of goals and
produces a plan that satisfies the goals. The planning
module of the task agents can be a full-edged planner,
whereas the planning module of the interface agents and
the information agents is much simpler consisting of
retrieval and instantiation of plan templates. In our initial
implementation, the information agent planning component
is a simple plan retrieval mechanism that instantiates a
new task structure for each goal. Thus it is extremely fast
but lacks edibility. Every plan step has an (optional)
execution deadline.

The key component of this architecture is a hierarchical
representation of task/subtask relationships, on which we
rely heavily in our information software agent architecture.
This representation, called a task tree, has goals as non-
terminal nodes, and executable actions and execution
monitoring mechanisms at the leaves. Temporal
constraints between nodes are used to schedule task
planning and execution: actions are queued until their
temporal constraints are satisfied. For example, a
sequential-achievement constraint between two nodes
implies that all actions associated under the first node
must be handled before any of those under the second
node; whereas a parallel-achievement constraint allows
that the actions under the first node can be parallelly
executed along with the actions under the second node.
This combination of hierarchical task decomposition and
temporal constraints form the agent's representation of
plans. Either a first principle general planner or a plan
retrieval component plus domain-specific plan fragments
can be used to generate plans. We adopt the plan retrieval

approach in our implementation because of efficiency
considerations.

Figure 1: Agent Architecture

We have extended the original TCA architecture with a
communication module that accepts and interprets
messages from other agents in KQML. In addition,
interface agents also accept and interpret e-mail
messages. We have found that e-mail is a convenient
medium of communicating with the user and/or other
interface agents (e.g. agents that provide event notification
services). Messages can contain request for services.
These requests become goals of the recipient agent.

The scheduling module schedules each of the plan steps.
The agent scheduling process in general takes as input
the agent's current set of plan instances, in particular, the
set of all executable actions, and decides which action, if
any, is to be executed next. This action is then identified as
a fixed intention until it is actually carried out (by the
execution component). Whereas for task agents,
scheduling can be very sophisticated, in our initial
implementation of information agents, we use a simple
earliest-deadline-first schedule execution heuristic.

Agent reactivity considerations are handled by the
execution monitoring and exception handling processes.
The agent execution monitoring process takes as input the
agent's next intended action and prepares, monitors, and
completes its execution. The execution monitor prepares
an action for execution by setting up a context (including
the results of previous actions, etc.) for the action. It
monitors the action by optionally providing the associated
computation limited resources e.g. the action may be
allowed only a certain amount of time and if the action
does not complete before that time is up, the computation
is interrupted and the action is marked as having failed.

When an action is marked as failed, the exception
handling process takes over to replan from the current
execution point to help the agent recover from the failure.

International Journal of Information Technology and Management

Vol. IV, Issue No. I, February – 2013, ISSN 2249-4510

Available online at www.ignited.in Page 6
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

For instance, when a certain external information source is
out of service temporarily, the agent who needs data from
this information source shouldn't just wait passively until
the service is back. Instead, the agent might want to try
another information source or switch its attention to other
tasks for a certain period of time before returning to the
original task. Mechanisms for reactivity in the agent
architecture provide a systematic and reusable way of
engineering these uncertainties handling mechanism into
software agents. A simple example is a timeout
mechanism. Whenever an agent fails to retrieve the
information of interest from a certain source within a
predetermined time limit, the agent will automatically
invoke an exception handling routine, which might invoke a
preplanning process or simply wait for a particular time
interval before re-trying accessing the information. Upon
completion of an action, results are recorded, downstream
actions are enabled if so indicated, and statistics collected.

The agent's plan library contains skeletal plans and plan
fragments that are indexed by goals and can be retrieved
and instantiated according to the current input parameters.
The retrieved and instantiated plan fragments are used to
form the agent's task tree that is incrementally executed.

The multi-agent System

Agents were integrated into the DSS for the purpose of
automating more tasks for the user, enabling more indirect
management, and requiring less direct manipulation of the
DSS. Specifically, agents were used to collect information
outside of the organization and to generate decision-
making alternatives that would allow the user to focus on
solutions that were found to be significant. A set of agents
is integrated to the system and placed in the DSS
components, according to our architecture of GDSS.

Integrating Agent in Cooperative Intelligent Decision
Support System - The individual DSS, as shown in Figure
2. comprises a set of agents grouped in an agency. The
agents in an agency are tightly coupled to the dominating
agent (representing the decision maker). The dominating
agent provides access to the world outside its agency.
Different agents in an agency communicate with each
other through messages.

Incoming messages are selected by each agent based on
the event selection mechanism such as first come first
served (FCFS). The proposed architecture comprises:

The Interface Agent (IA) continuously receives data from
the process – e.g. alarm messages about unusual events
and status information about the process components.
From this information, the IA periodically produces a
snapshot which describes the entire system state at the

current instant in time. It also performs a preliminary
analysis on the data it receives from the process to
determine whether there may be a fault.

A Decision Maker and Agent (DMA) performs most of the
autonomous problem solving. It exhibits a higher level of
sophistication and complexity than other agents. A DMA:

(1) receives user delegated task specifications from
an IA,

(2) Interprets the specifications and extracts problem
solving goals,

(3) Forms plans to satisfy these goals,

(4) Identifies information seeking sub-goals that are
present in its plans,

(5) Decomposes the plans and coordinates with
appropriate Information Retrieval Agent (IRA), Modelling
Agent (MA), Diagnosis Agent (DA) and Action Agent (AA)
for plan execution, monitoring, and results composition.

DMA has the following knowledge: 1) knowledge for
performing the task (e.g. query decomposition, sequencing
of task steps), 2) information gathering needs associated
with the task model, 3) knowledge about relevant
information, modelling, diagnosis, and action agents that it
must coordinate with in support of its particular task, 4)

Coordination rules - that enable coordination with the
other relevant agents. An Information Retrieval Agent (IRA)
primarily provides intelligent information services. The
simpler of these services is a shot retrieval of information
in response to a query: A more enhanced information
service is constant monitoring of available database for the
occurrence of predefined information patterns. An even
more advanced information agent can, in addition to
communication with other agents, monitor its data base for
the appearance of particular patterns. A typical information
specific agent knows:

1) model and associated meta-level information of
the databases that it is associated with, such size, average
time it takes to answer a query,

2) Procedures for accessing databases,

3) Conflict resolution and information fusion
strategies, and 4) protocols for coordination with other
relevant software agents.

Agents structure - Clearly, all the modules representing
the inner structure of an agent may depend on each other.
This is especially true for the local problem solver and the

International Journal of Information Technology and Management

Vol. IV, Issue No. I, February – 2013, ISSN 2249-4510

Available online at www.ignited.in Page 7
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

coordination modules which do not only exchange real
time information but, in addition, must coordinate their
decision rules and performance criteria. If we consider the
relationship between the coordination module, the problem
solver, and the knowledge base. We found that they have
to make sure the data needed available. The
communication between the agents may roughly be
described by the coordination module and the interface
component. They are describing the way how agents may
communicate

A coordination protocol - The problem solving
mechanism is based on a set of cycles until the entire
problem is solved. Each cycle consists of the following
steps:

1) identifying candidate methods;

2) identifying triggered methods;

3) selecting a method;

4) assigning the method to an agent;

5) executing the method; and

6) Evaluating the task state.

Before launching the problem solving process (diagnosis
and actions of repair), The DMA Agent ask for help, it calls
the coordinator agent which is created at the same time.
The coordination protocol provides the rules for an
information exchange regarding the coordination task
while the communication protocol (e.g. interface) together
with its management. In fact, the rules applied in the
coordination module concern the coordination itself and
the way how the data are made available.

Figure 2. The group decision support system architecture

Figure 3. Agent architecture for individual DSS.

CONCLUSION

In this paper, we have described concepts and techniques
for structuring and organizing distributed collections of
intelligent software agents in a reusable way. We
presented the various agent types that we believe are
necessary for supporting and seamlessly integrating
information gathering from distributed internet-based
information sources and decision support, including (1)
Interface agents which interact with the user receiving user
specifications and delivering results, (2) Task agents which
help users perform tasks by formulating problem solving
plans and carrying out these plans through querying and
exchanging information with other software agents, and (3)
Information agents which provide intelligent access to a
heterogeneous collection of information sources. We have
also described and illustrated our implemented, distributed
system of such collaborating agents. We believe that such
flexible distributed architectures, consisting of reusable
agent components, will be able to answer many of the
challenges that face users as a result of the availability of
the new, vast, net-based information environment. These
challenges include locating, accessing, filtering and
integrating information from disparate information sources,
monitoring the Infosphere and notifying the user or an
appropriate agent about events of particular interest in
performing the user-designated tasks, and incorporating
retrieved information into decision support tasks.

In the last decade the technologies used to solve complex
problems has shifted from developing large and integrated
software systems, to delivering small, autonomous and
heterogeneous software components that can interact with
humans, with other software components, and different
services or data. Multi agent system (MAS) paradigm
represents the most natural approaches to address
complex problems.

International Journal of Information Technology and Management

Vol. IV, Issue No. I, February – 2013, ISSN 2249-4510

Available online at www.ignited.in Page 8
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

MAS may be employed in many different ways. They can
be used in a purely structural way, just in splitting up a
complex decision problem into simpler tasks, or they can
be employed in supporting decision making in team-like
systems having private information or even in principal
agent settings and in negotiation.

In this paper, we have integrated agents into GDSS for the
purpose of automating more tasks for the decision maker,
enabling more indirect management, and requiring less
direct manipulation of the DSS. In particular, agents were
used to collect information and generate alternatives that
would allow the user to focus on solutions found to be
significant. Based on this, and considering that
communication capabilities play an essential role in GDSS
to enable ‘any-time, any-place” operation mode of the
system.

Further work based on coordination protocols between
agents needs to be done. Particularly, the context
information domain included in the software tool will be
extended in order to improve the support for decision
making and the coordination activities. We intend to
present an efficient algorithm for multi-agent coordination
based on the work presented by Cox et al. in another
paper. And Finally, as stated in Web technology will be
ever more considered in DSS, thereby people will make
codecisions in ‘‘virtual teams’’, no matter where they are
temporarily located, thus we intend to integrate Web
services at the design level so that we can conduct
research on the decision and collaboration behaviors of
geographically dispersed teams.

A Web-based DSS uses the Web as a portal to the
underlying DSS. It lets interested users access and make
use of the underlying DSS through the Web. Moreover, we
believe a distributed implementation of the underlying DSS
is also important for a Web-based DSS presents a
challenge, which needs the combination of a DSS with
distributed computing technology. Our proposed multi-
agent approach provides a practical way to implement a
Web-based DSS.

The proposed architecture of the Web-based DSS is under
development. One of our perspectives is to completely
implement it, test it in a manufacturing industry in order to
obtain feedback on the usability of the developed system.

REFERENCES

 Adla, J-L. Soubie, “A distributed architecture for
cooperative decision support systems”, Proc. of Euro
Worgroup Workshop on decision support systems,
London, England, 2006.

 C. Schneeweiss, Distributed Decision Making,
Springer – Verlag Berlin. Heidelberg, 2003

 Zamfiresecun. “An Agent – Oriented Approach for
Supporting Self Facilitation in Group Decisions”, Studies in
Informatics and Control, Vol. 12, No.2, June 2003, pp.137-
148.

 Donald A. Norman. How might people interact with
agents. Communications of the ACM, 37(7), July 1994.

 E. Jennings, “Using intelligent agents to manage
business processes”. Proc. of the 1st international
conference on practical applications of intelligent agents
and multi-agent technology (PAAM96), B. Crabtree and N.
R. Jennings editors, pp. 345 - 360.

 E. Turban, and J. Aronson, Decision support
systems and intelligent systems, Prentice-Hall
International, Upper Saddle River, New Jersey, 2001.

 F.G, Filip, “Decision support and control for large-
scale complex systems”, Annu Rev Control, doi:
10.1016/j.arcontrol.03.002, 2008.

 Huaiqing, W., Stephen, L., Lejian, L.: Modeling
constraint-based negotiating agents. Decision Support
Systems, 33(2), pp. 201--217, (2002)

 J. Forth, K. Statis, and F. Toni, “Decision Making
with a KGP Agent System”, Journal of Decision Systems,
Lavoisier, 2006, vol. 15, pp. 241- 266.

 L.S. Mahoney, P.B. Roush, D. Bandy, “An
investigation of the effect of decisional guidance and
cognitive ability on decision making involving uncertainty
data”, Information and Organization 13 (2), 2003 , pp. 85–
110.

 M. R. Genesereth and S. P. Katchpel. Software
agents. Communications of the ACM, 37(7):48{53,147,
1994.

 M. Limayem, P. Banerjee, and L. Ma, “Impact of
GDSS: opening the black box”, Decision Support Systems,
Lavoisier, 2006, pp. 945- 957.

 W. Cheung, “An Intelligent decision support
system for service network planning” , Decision Support
Systems, Lavoisier, 2005, Vol. 39, pp. 415- 428.

 Y. Shoham. Agent-oriented programming. Arti_cial
Intelligence, 60(1):51{92, 1993. 4. M. Wooldridge and N.
R. Jennings. Intelligent agents: Theory and practice. The
Knowledge Engineering Review, 10(2):115{152, 1995.

