

International Journal of Information Technology and Management

Vol. IV, Issue No. I, February – 2013, ISSN 2249-4510

Available online at www.ignited.in Page 1
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

“A Study on System Programming and Compiler
Construction and Its Phases”

Anu Batra

Assistant Professor, Dronacharya Institute of Management & Technology, Kurukshetra, Pin Code – 136118, Haryana
(India)

Abstract – System programming is the activity of computer programming system software. The primary
distinguishing characteristic of systems programming when compared to application programming is
that application programming aims to produce software which provides services to the user e.g. word processor,
whereas systems programming aims to produce software which provides services to the computer hardware
e.g. disk defragmenter. It requires a greater degree of hardware awareness.

--♦--

INTRODUCTION

Systems programming is sufficiently different from
application programming that programmers tend to
specialize in one or the other. In system programming,
often limited programming facilities are available. The use
of automatic garbage collection is not common
and debugging is sometimes hard to do. The runtime
library, if available at all, is usually far less powerful, and
does less error checking. Because of those
limitations, monitoring and logging are often
used; operating systems may have extremely elaborate
logging subsystems.

Implementing certain parts in operating system and
networking requires systems programming, for example
implementing Paging (Virtual Memory) or a device
driver for an operating system.

Originally systems programmers invariably wrote
in assembly language. Experiments with hardware support
in high level languages in the late 1960s led to such
languages as PL/S,BLISS, BCPL and
extended ALGOL for Burroughs large systems. Forth also
have applications as a systems language. In the
1980s, C became ubiquitous, aided by the growth of Unix.
More recently C++ has seen some use, for instance a
subset of it is used in the I/O Kit drivers of Mac OS X.

The following attributes characterize systems
programming:

 The programmer will make assumptions about the
hardware and other properties of the system that

the program runs on, and will often exploit those
properties, for example by using an algorithm that
is known to be efficient when used with specific
hardware.

 Usually a low-level programming language or
programming language dialect is used that:

 can operate in resource-constrained environments

 is very efficient and has little runtime overhead

 has a small runtime library, or none at all

 allows for direct and "raw" control over memory
access and control flow

 lets the programmer write parts of the program
directly in assembly language

 Often systems programs cannot be run in
a debugger. Running the program in asimulated
environment can sometimes be used to reduce
this problem.

SYSTEM PROGRAMMING LANGUAGE

A System programming language is usually used to mean
"a language for system programming": that is, a language
designed for writing system software as distinct from
application software.

System software is computer software designed to operate
and control the computer hardware and to provide a

http://www.ignited.in/
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/System_software
http://en.wikipedia.org/wiki/Application_programming
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Word_processor
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Defragmentation
http://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Runtime_library
http://en.wikipedia.org/wiki/Runtime_library
http://en.wikipedia.org/wiki/System_monitoring
http://en.wikipedia.org/wiki/Data_logging
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Virtual_Memory
http://en.wikipedia.org/wiki/Device_driver
http://en.wikipedia.org/wiki/Device_driver
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/High_level_languages
http://en.wikipedia.org/wiki/IBM_PL/S
http://en.wikipedia.org/wiki/BLISS
http://en.wikipedia.org/wiki/BCPL
http://en.wikipedia.org/wiki/ALGOL
http://en.wikipedia.org/wiki/Burroughs_large_systems
http://en.wikipedia.org/wiki/Forth_(programming_language)
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/I/O_Kit
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Programmer
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Run-time_system
http://en.wikipedia.org/wiki/Runtime_library
http://en.wikipedia.org/wiki/Control_flow
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Computer_simulation
http://en.wikipedia.org/wiki/Computer_simulation
http://en.wikipedia.org/wiki/System_programming
http://en.wikipedia.org/wiki/System_software
http://en.wikipedia.org/wiki/Application_software

International Journal of Information Technology and Management

Vol. IV, Issue No. I, February – 2013, ISSN 2249-4510

Available online at www.ignited.in Page 2
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

platform for running application software, and includes
such things as operating systems, utility software, device
drivers, compilers, and linkers.

FEATURES

In contrast with application languages, system
programming languages typically offer more-direct access
to the physical hardware of the machine: an archetypical
system programming language in this sense was BCPL.
System programming languages often lack built in
input/output facilities because a system-software project
usually develops its own input/output or builds on basic
monitor I/O or screen management services facilities. The
distinction between languages for system programming
and applications programming became blurred with
widespread popularity of PL/I, C and Pascal.

The earliest system software was written in assembly
language for reasons including efficiency of object code,
compilation time, and ease of debugging. Application
languages such as FORTRAN were used for system
programming, although they usually still required some
routines to be written in assembly language.

Mid-level languages "have much of the syntax and
facilities of a higher level language, but also provide direct
access in the language as well as providing assembly
language to machine features." One of the earliest of these
mid-level programming languages was PL360, which had
the general syntax of ALGOL 60, but whose statements
directly manipulated CPU registers and memory. Other
languages in this category are MOL-360 and PL/S.

As an example, a typical PL360 statement is R9 := R8 and
R7 shall 8 or R6, signifying that registers 8 and 7 should
be together, the result shifted left 8 bits, the result of that
oriented with the contents of register 6, and the result
placed into register 9.

While PL360 is at the semantic level of assembly
language, another kind of system programming language
operates at a higher semantic level, but has specific
extensions designed to make the language suitable for
system programming. An early example of this kind of
language is LRLTRAN which extended Fortran with
features for character and bit manipulation, pointers, and
directly-addressed jump tables.

Subsequently, languages such as C were developed,
where the combination of features was sufficient to write
system software, and a compiler could be developed that
generated efficient object programs on modest hardware.
Such a language generally omits features that cannot be
implemented efficiently, and adds a small number of

machine-dependent features needed to access specific
hardware capabilities; inline assembly code, such as
C's asm statement, is often used for this purpose. Although
many such languages were developed, C and C++ are the
ones that have survived.

System Programming Language (SPL) is also the name of
a specific language on the HP 3000 computer series, used
for its operating system HP Multi-Programming Executive,
and other parts of its system software.

Compiler construction is an area of computer science that
deals with the theory and practice of
developing programming languages and their
associated compilers. The theoretical portion is primarily
concerned with syntax, grammar and semantics of
programming languages. One could say that this gives this
particular area of computer science a strong tie
with linguistics. Some courses on compiler construction
will include a simplified grammar of a spoken language
that can be used to form a valid sentence for the purposes
of providing students with an analogy to help them
understand how grammar works for programming
languages. The practical portion covers actual
implementation of compilers for languages. Students will
typically end up writing the front end of a compiler for a
simplistic teaching language, such as Micro.

LEXICAL ANALYSIS

The first phase of compilation is lexical analysis of the
source code. This phase involves grouping the characters
into lexemes. Lexemes belong to token classes such as
"integer", "identifier", or "whitespace". A token of the form
<token-class, attribute-value> is produced for each
lexeme. Lexical analysis is also called scanning.

SYNTAX ANALYSIS

The second phase of constructing a compiler is syntax
analysis. The output of lexical analyzer is used to create a
representation which shows the grammatical structure of
the tokens. Syntax analysis is also called parsing.

Compilers and operating systems constitute the basic
interfaces between a programmer and the machine for
which he is developing software. In this book we are
concerned with the construction of the former. Our intent is
to provide the reader with a firm theoretical basis for
compiler construction and sound engineering principles for
selecting alternate methods, implementing them, and
integrating them into a reliable, economically viable
product. The emphasis is upon a clean decomposition
employing modules that can be re-used for many
compilers, separation of concerns to facilitate team

http://www.ignited.in/
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Utility_software
http://en.wikipedia.org/wiki/Device_driver
http://en.wikipedia.org/wiki/Device_driver
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Linker_(computing)
http://en.wikipedia.org/wiki/BCPL
http://en.wikipedia.org/wiki/PL/I
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/FORTRAN
http://en.wikipedia.org/wiki/PL360
http://en.wikipedia.org/wiki/MOL-360
http://en.wikipedia.org/wiki/PL/S
http://en.wikipedia.org/wiki/HP_3000
http://en.wikipedia.org/wiki/HP_Multi-Programming_Executive
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Programming_languages
http://en.wikipedia.org/wiki/Syntax
http://en.wikipedia.org/wiki/Grammar
http://en.wikipedia.org/wiki/Semantics
http://en.wikipedia.org/wiki/Linguistics
http://en.wikipedia.org/wiki/Micro_programming_language

International Journal of Information Technology and Management

Vol. IV, Issue No. I, February – 2013, ISSN 2249-4510

Available online at www.ignited.in Page 3
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

programming, and exibility to accommodate hardware and
system constraints. A reader should be able to understand
the questions he must ask when designing a compiler for
language X on machine Y, what trades are possible and
what performance might be obtained. He should not feel
that any part of the design rests on whim; each decision
must be based upon specific, identifiable characteristics of
the source and target languages or upon design goals of
the compiler.

The vast majority of computer professionals will never
write a compiler. Nevertheless, study of compiler
technology provides important benefits for almost
everyone in the field. It focuses attention on the basic
relationships between languages and machines.
Understanding of these relationships eases the inevitable
transitions to new hardware and programming languages
and improves a person's ability to make appropriate in
design and implementation. It illustrates application of
software engineering techniques to the solution of a
significant problem. The problem is understandable to
most users of computers, and involves both combinatorial
and data processing aspects.

Many of the techniques used to construct a compiler are
useful in a wide variety of applications involving symbolic
data. In particular, every man-machine interface
constitutes a form of programming language and the
handling of input involves these techniques. We believe
that software tools will be used increasingly to support
many aspects of compiler construction.

The details of this discussion are only interesting to those
who must construct such tools; the general outlines must
be known to all who use them. We also realize that
construction of compilers by hand will remain an important
alternative, and thus we have presented manual methods
even for those situations where tool use is recommended.

Virtually every problem in compiler construction has a vast
number of possible solutions. We have restricted our
discussion to the methods that are most useful today, and
make no attempt to give a comprehensive survey. Thus,
for example, we treat only the LL and LR parsing
techniques and provide references to the literature for
other approaches. Because we do not constantly remind
the reader that alternative solutions are available, we may
sometimes appear overly dogmatic although that is not our
intent.

A decomposition of any problem identifies both tasks and
data structures. For example, we discussed the analysis
and synthesis tasks. We mentioned that the analyzer
converted the source program into an abstract
representation and that the synthesizer obtained

information from this abstract representation to guide its
construction of the target algorithm. Thus we are led to
recognize a major data object, which we call the structure
tree in addition to the analysis and synthesis tasks.

We define one module for each task and each data
structure identified during the decomposition. A module is
specified by an interface that defines the objects and
actions it makes available, and the global data and
operations it uses. It is implemented by a collection of
procedures accessing a common data structure that
embodies the state of the module. Modules fall into a
spectrum with single procedures at one end and simple
data objects at the other. Four points on this spectrum are
important for our purposes.

 Procedure: An abstraction of a single "memory less"
action i.e. an action with no internal state. It may be
invoked with parameters, and its effect depends only upon
the parameter values. Example A procedure to calculate
the square root of a real value.

 Package: An abstraction of a collection of actions related
by a common internal state.

The declaration of a package is also its instantiation, and
hence only one instance is possible. Example - The
analysis or structure tree module of a compiler.

Abstract data type: An abstraction of a data object on
which a number of actions can be performed. Declaration
is separate from instantiation, and hence many instances
may exist. Example: A stack abstraction providing the
operations push, pop, top, etc.

Variable: An abstraction of a data object on which exactly
two operations, fetch and store, can be performed.
Example : An integer variable in most programming
languages.

Abstract data types can be implemented via packages:
The package defines a data type to represent the desired
object, and procedures for all operations on the object.
Objects are then instantiated separately. When an
operation is invoked, the particular object to which it
should be applied is passed as a parameter to the
operation procedure.

REFERENCES:

 Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey
D. Ullman. Compilers: Principles, Techniques, and
Tools.

 Michael Wolfe. High-Performance Compilers for
Parallel Computing. ISBN 978-0-8053-2730-4.

http://www.ignited.in/
http://en.wikipedia.org/wiki/Alfred_V._Aho
http://en.wikipedia.org/wiki/Monica_S._Lam
http://en.wikipedia.org/wiki/Ravi_Sethi
http://en.wikipedia.org/wiki/Jeffrey_D._Ullman
http://en.wikipedia.org/wiki/Jeffrey_D._Ullman
http://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools
http://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools
http://en.wikipedia.org/w/index.php?title=Michael_Wolfe_(computer_scientist)&action=edit&redlink=1
http://en.wikipedia.org/wiki/Special:BookSources/9780805327304

International Journal of Information Technology and Management

Vol. IV, Issue No. I, February – 2013, ISSN 2249-4510

Available online at www.ignited.in Page 4
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

 Aho, Alfred V.; Lam, Monica S.; Sethi, Ravi;
Ullman, Jeffrey D. (2007), Compilers: Principles,
Techniques, & Tools (2nd ed.),
Pearson, ISBN 978-81-317-2101-8.

 Rissen, J. P., Heliard, J. C., Ichbiah, J. D., and
Cousot, P. The system implementation language
LIS, reference manual. Technical Report 4549
E/EN, CII Honeywell-Bull, Louveciennes, France.

 Robertson, E. L. Code generation and storage
allocation for machines with span dependent
instructions. ACM Transactions on Programming
Languages and Systems, 1(1):71{83.Rohrich, J.
Automatic construction of error correcting parsers.
Technical Report Internert Bericht 8, University at
Karlsruhe.

 Rohrich, J. Methods for the automatic construction
of error correcting parsers. ActaInformatica,
13(2):115.

 Rosen, S. . Programming and Systems and
Languages. Mc Grawhill.

 Rosenfeld, J. L., editor . Information Processing
74. North-Holland, Amsterdam, NL.

 Rosenkrantz, D. J. and Stearns, R. E. Properties
of deterministic top-down grammars. Information
and Control, 17:226.

 Ross, D. T. . The AED free storage package.
Communications of the ACM, 10(8):481- 492.

 Rutishauser, H. Automatische
Rechenplanfertigung bei Programm-gesteuerten

 Rechenmaschinen. Mitteilungen aus dem Institut
four Angewandte Mathematik der ETHZourich.

 Sale, Arthur H. J. The classification of FORTRAN
statements. Computer Journal, 14:10.

http://www.ignited.in/
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-81-317-2101-8

