

REVIEW ARTICLE

Study of Political Representations:
Diplomatic Missions of Early Indian to

Britain

Journal of
Advances and

Scholarly
Researches in

Allied
Education

Vol. 3, Issue 6,
April-2012,
ISSN 2230-

7540

International Journal of
Information Technology

and Management

Vol. V, Issue No. I, August-
2013, ISSN 2249-4510

AN

INTERNATIONALLY

INDEXED PEER

REVIEWED &

REFEREED JOURNAL

A COMPLETE ANALYSIS OF TEST CHOICE AND
EFFICIENT REGRESSION TESTING

www.ignited.in

Meena Mehta

w
w

w
.i

gn
it

e
d

.i
n

1

 International Journal of Information Technology and Management
Vol. V, Issue No. I, August-2013, ISSN 2249-4510

A Complete Analysis of Test Choice and

Efficient Regression Testing

Meena Mehta

Assistant Professor (Adhoc) Maharaja Agarsen College, University of Delhi

Abstract – Regression testing is a costly but crucial problem in software development. Both the research
community and the industry have paid much attention to this problem. However, are the issues they
concerned the same? The paper try to do the survey of current research on regression testing and
current practice in industry and also try to find out whether there are gaps between them. The
observations show that although some issues are concerned both by the research community and the
industry gay, there do exist gaps.

Regression testing is an important and expensive activity that is undertaken every time a program is
modified to ensure that the modifications do not introduce new bugs into previously validated code. An
important research problem, in this context, is the selection of a relevant subset of test cases from the
initial test suite that would minimize both the regression testing time and effort without sacrificing the
thoroughness of regression testing. Researchers have proposed a number of regression test selection
techniques for different programming paradigms such as procedural, object-oriented, component-based,
database, aspect, and web applications. In this paper, we review the important regression test selection
techniques proposed for various categories of programs and identify the emerging trends.

---------------------------♦-----------------------------

INTRODUCTION

No matter how well conceived and tested before being
released, softwarewill eventually have to be modified
in order to fix bugs or respond to changes in user
specifications. Regression testing must be conducted
to confirm that recent program changes have not
adversely affected existing features and new tests
must be conducted to test new features. Testers might
rerun all test cases generated at earlier stages to
ensure that the program behaves as expected.
However, as a program evolves the regression test set
grows larger, old tests are rarely discarded, and the
expense of regression testing grows. Repeating all
previous test cases in regression testing after each
minor software revision or patch is often impossible
due to the pressure of time and budget constraints. On
the other hand, for software revalidation, arbitrarily
omitting test cases used in regression testing is risky.
In this paper, we investigate methods to select small
subsets of effective fault-revealing regression test
cases to revalidate software.

Many techniques have been reported in the literature
on how to select regression tests for program
revalidation. The goal of some studies is to select
every test case on which the new and the old
programs produce different outputs, but ignore the
coverage of these tests in the modified program. In
general, however, this is a difficult, sometimes un-
decidable, problem. Others place an emphasis on
selecting existing test cases to cover modified program
components and those may be affected by the

modifications, i.e., they use coverage information to
guide test selection. They are not concerned with
finding test cases on which the original and the
modified programs differ. Consequently, these
techniques may fail to select existing tests that
expose faults in the modified program. They may also
include test cases that do not distinguish the new
program from the old for re-execution.

In this paper, a combination of both techniques
described above is used. We first select tests from
the regression suite that execute any of the
modifications in the old program and refer to this
technique as a modification-based test selection
technique. This includes tests that have to be used
for revalidation, but it also contains some redundant
tests on which the old and the new program produce
the same outputs.

Then, depending on the available resources, a
tradeoff between what we should ideally do in
regression testing and what we can afford to do is
applied to determine which tests, among those
necessary, should be reexecuted first, and which
ones have lower priority or are to be omitted from
reexecution. Two techniques, test set minimization
and prioritization, are used. Although both of them
may exclude certain necessary regression tests, the
value of using them is explained below.

BASIC METHOD AND TERMINOLOGY

Meena Mehta

w
w

w
.i

gn
it

e
d

.i
n

2

 A Complete Analysis of Test Choice and Efficient Regression Testing

The proposed hybrid approach is based on the
selection and prioritization of the test cases for inter
procedural programs. It is a version-specific technique
that takes into account the variable usage in the old as
well as the modified program, named as Pe and
Pe’respectively. The technique requires that the test
cases in the original test suite Te not only contain test
case identification, expected input and expected
output (as per past practice) but also the variable(s)
that is (are) being checked by this test case and the
module to which the variable belongs. It selects all
those variables that are in the changed statements
and then selects only those test cases that either
correspond to these variables or to the variables
computed from them recursively. Multiplelevel
prioritization of the selected test cases is performed on
the basis of variable usage. Variables are a vital
source of changes in the program and this approach
captures the effect of change in terms of variable
computation. The approach takes into account the
changes in the variables and its ripple effect. Appendix
1 defines some related terminology.

A computed variable table (CVTe) is prepared
(maintained through development testing) in which the
list of variables computed from other variables is
maintained. An array with the information of the
number of times the variable is used in computation is
also maintained during development testing in VDCe
(Variable Dependency Count). The algorithm is
presented in Appendix 2 which demonstrates the
technique. Initially, the resultant test suite is set to null.
In step 2 of algorithm, a list of variables “Ve” is created
from changed (inserted/modified/deleted) lines using
array CLB which maintain changed line numbers.

If any variable is deleted permanently from the
program by modification or deletion of any line, it
results in modified versions of Ve, VDCe, and CVTe (by
deleting the row corresponding to those variables).
The selection step and priority1 assignment step (step
3) selects all those test cases that correspond to
variables contained in modified Ve. These test cases
are assigned Priority1 as 1 (step 3(i), (ii)). Step 3(iv) of
the algorithm gets the variable computed from
variables found above from modified CVT and sets
Priority1 of corresponding test case as 2 onwards. If
the same test case already exists then Priority1 is kept
as the minimum of the two.

After assigning Priority1, Priority2 are assigned, as
stated in step 4 of the algorithm. The purpose of
assigning Priority2 is to further prioritize the test cases
that have the same value as Priority1. Priority2 is
based on the dependency count as in the modified
VDCe. The variables which have highest dependency
count are selected. The test cases corresponding to
these selected variables are assigned Priority2 as 1.
Then, the variables having next highest dependency
count are selected. The test cases corresponding to
them are assigned priority2 as 2 and so on. Step 4(i)
to Step 4(iii) chooses all the test cases with same
Priority1 and Step 4(v) further prioritize according to

the dependency count. The resultant test suite T’ has
test cases having Priority1 and Priority2 assigned.

REGRESSION TESTING IN PRACTICE

Commercial Regression Testing Tools - In this
section, a set of leading regression testing tools will be
briefly reviewed. There are tons of testing tools
nowadays and there are some other interesting tools,
e.g., which are not discussed in this paper. The main
reasons why the tools are selected in this paper are:

1. These tools are widely used in the industry
and have high reputation by the users.

2. The free trial version is available online or
some important documents which can give
enough details are available online.

3. The tools can support the regression testing
well.

Case Studies - In this section, several case studies
will be done to show the effort to apply the
regression testing technologies into the practice or
the current regression practice in the industry. The
tool they developed is called Echelon, a test
prioritization system. The distinguish feature of the
tool is that it analyze the binary code while most the
regression prioritizing technologies analyze the
source code. The Echelon is part of the Magellan
tool set. The core of the Magellan is a SQL Server
database which stores test coverage information for
each test. All the program binaries and the source
codes are stored separately. Magellan provides a set
of tools which are commonly needed during the test
process. It includes test coverage collection tool, GUI
interface to map coverage data source code and test
migration tool to migrate coverage data from older
version to the new one. Echelon is actually the
prioritization system of the tool set. The following
graph is the architecture of the Echelon system.

GRAPH MODELS FOR PROCEDURAL
PROGRAMS

Graph models of programs have extensively been
used in many applications such as program slicing,
impact analysis, reverse engineering, computation of
program metrics, regression test selection, etc.
Analysis of graph models of programs is more
efficient compared to textual analysis, and various
types of relationships among program elements are
also not explicit in the code. This has led to several
representations such as Control Flow Graph (CFG),
Program Dependence Graph (PDG) and System
Dependence Graphs (SDG) being proposed for
procedural programs. In the following, we briefly
discuss the important graph models proposed for
procedural programs.

Flow Graph - A flow graph for a program P is a
directed graph (N, E) where the program statements

Meena Mehta

w
w

w
.i

gn
it

e
d

.i
n

3

 International Journal of Information Technology and Management
Vol. V, Issue No. I, August-2013, ISSN 2249-4510

correspond to the set of nodes N in the flow graph,
and the set of edges E represent the relationships
among the program statements. However, the nodes
in a flow graph can also correspond to basic blocks in
a program. Typically it is assumed that there are two
distinguished nodes called start with in-degree zero
and stop with out-degree zero. There exists a path
from start to every other node in a flow graph, and
similarly, there exists a path from every other node in
the graph to stop.

Control Flow Graph - A control flow graph (CFG) is a
flow graph that represents the sequence in which the
different statements in a program get executed. That
is, it represents the flow of execution of control in the
program. In fact, a CFG captures all the possible flows
of execution of a program.

The CFG of the program P is the flow graph G = (N, E)

where an edge (m, n) E indicates possible flow of
control from node m to node n. Figure 4 represents the
CFG of the program shown in Figure. Note that the
existence of an edge (x, y) in a CFG does not
necessarily mean that control must transfer from x to y
during a program run.

Data Dependence Graph - Dependence graphs are
used to represent potential dependencies between the
elements of a program. In the following, we discuss
data and control dependencies between program
elements and their graph representations.

Data Dependence: Let G be the CFG of a program P.

A node n G is said to be data dependent on a node

m G, if there exists a variable var of the program P
such that the following hold:

1. The node m defines var,

2. The node n uses var,

3. There exists a directed path from m to n along
which there is no intervening definition of var.

THREATS TO VALIDITY

On carefully analyzing the behavior of the two
techniques, we observed that the proposed technique
gives better results for the programs containing

intensive variable computations. Further, the technique
does not build the new test cases required for the code
added due to modification. Moreover, the types of
decision statements may affect the percentage of
coverage achieved. Coverage depends on the type of
decision statements: Some decisions are taken after
the execution such as in “do…while,” and “for,” and
some before execution such as “while.” There are
other options available in the programming language
such as “switch statement,” “multiple condition
decision statement,” “if…else,” and so on, which give
different coverage for the same test case.

REGRESSION TEST SUITE

A regression test suite of 1000 distinct tests was
created based on the operational profile of how the
space program was used. An operational profile, as
formalized by Musa and used in our experiment, is a
set of the occurrence probabilities of various software
functions. To obtain an operational profile for space
we identified the possible functions of the program
and generated a graph capturing the connectivity of
these functions. Each node in the graph represented
a function. Two nodes, A and B, were connected if
control could flow from function A to function B. There
was a unique start and end node representing
functions at which execution began and terminated,
respectively.

A path through the graph from the start node to the
end node represents one possible program
execution. To estimate the occurrence probability of
the software functions, each arc was assigned a
transition probability, i.e., the probability of control
flowing between the nodes connected by the arc. For
example, if node A is connected to nodes B, C and D,
and the probabilities associated with arcs A-B, A-C,
and A-D are, respectively, 0.3, 0.6 and 0.1, then after
the execution of functionA the programwill perform
functions B, C or D, respectively, with probability 0.3,
0.6, and 0.1. There was a total of 236 function nodes.
Transition probabilities were determined by
interviewing the program users.

RTS TECHNIQUES FOR OBJECT-ORIENTED
PROGRAMS

The object-oriented paradigm is founded on several
important concepts such as encapsulation,
inheritance, polymorphism, dynamic binding, etc.
These concepts lead to complex relationships among
various program elements, and make dependency
analysis more difficult. Moreover, in object-oriented
development, reuse of existing libraries, class
definitions, program executables (blackbox
components), etc. are emphasized to facilitate faster
development of applications. These libraries and
components frequently undergo independent
modifications to fix bugs and enhance functionalities.

Meena Mehta

w
w

w
.i

gn
it

e
d

.i
n

4

 A Complete Analysis of Test Choice and Efficient Regression Testing

This creates a new dimension in regression testing of
object-oriented programs that use these third party
components or libraries, since the source code for
such libraries are often not available. These features,
therefore, raise challenging questions on how to
effectively select regression test cases that are safe for
such programs.

CONCLUSION

Regression testing is a costly but crucial problem in
software development. There are a lot of researches
addressing this area while in industry regression
testing is also a crucial process. The paper is an initial
work to survey both sides. And observations show that
while there are some issues both sides are concerned,
there are still some gaps between them. The gaps
may be good direction for the research, or more work
should be done to try to apply the technology from lab
to the industry. In view of the fact that static analysis of
large software systems is computationally expensive,
model-based RTS techniques appear to be a
promising approach that not only scales well, but is
more efficient. Furthermore, of late MDD has been
receiving a lot of attention. In MDD, there exists a
close relationship between the design model(s) and
code in the sense that any change to the model gets
reflected in the code and vice versa. Therefore,
instead of performing RTS on code, test selection
could be automatically performed based on design
models. Model-based RTS can also help to take into
consideration several aspects of program behavior
(like state transitions, message paths, task criticality,
etc.) that are not easily identified from static code
analysis.

In this paper, we have proposed and validated a
technique, which is an extension of an existing
technique proposed by us in an analogous study. The
technique proposed in this work is compared with a
technique given in literature by Rothermal et. al. The
main results of this work are:

 Numbers of test cases selected are less for
the proposed technique than the compared
one.

 The technique selected less number of test
cases as compared to other technique.

 The rate of fault detection using the technique
is higher for the resultant test suite

REFERENCES

 Srivastava and J. Thiagarajan. Effectively
Prioritizing Tests in Development
Environment. In Proceedings of the
International Symposium on Software Testing
and Analysis, pages 97–106, July 2002.

 G. Rothermel and M. J. Harrold, A Safe,
Efficient Regression Test Set Selection

Technique, ACM Transactions on Software
Engineering and Methodology, V.6, no. 2, April
1997, pages 173-210.

 G. Rothermel, Efficient effective regression
testing using safe test selection techniques,
PhD thesis, Clemson University, 1996.

 G.Rothermel and M. J. Harrold, Analyzing
Regression Test Selection Techniques, IEEE
Transactions on Software Engineering, V.22,
no. 8, August 1996, pages 529-551.

 J.Bible, G. Rothermel, D. Rosenblum, Coarse-
and fine-grained safe regression test selection.
ACM Transactions on Software Engineering
and Methodology 10 (2), (2001) 149-183.

 K. Abdullah and L.White. A firewall approach
for the regression testing of object-oriented
software. In Proceedings of 10th Annual
Software Quality Week, page 27, May 1997.

 M. R. Gary and D. S. Johnson, “Computers
and Intractability,” Freeman, New York,
1979.

 P.A Brown and D. Hoffman. The application
of module regression testing at TRIUMF.
Nuclear Instruments and Methods in Pysics
Research, Section A, . A293(1-2):377- 381,
August 1990.

 R. Binder. Testing Object-Oriented
Systems:Models, Patterns, and Tools.
Addison-Wesley, 1999.

 R. Gupta, M. J. Harrold, and M. L. Soffa, “An
approach to regression testing using slicing,”
in Proceedings of the Conference on
SoftwareMaintenance, pp 299-308, Orlando,
FL, November 1992.

 T. Ball. On the limit of control flow analysis
for regression test selection. In ISSTA ’98:
Proceedings of the 1998 ACM SIGSOFT
international symposium on Software testing
and analysis, pages 134–142, 1998.

