

REVIEW ARTICLE

Study of Political Representations:
Diplomatic Missions of Early Indian to

Britain

Journal of
Advances and

Scholarly
Researches in

Allied
Education

Vol. 3, Issue 6,
April-2012,
ISSN 2230-

7540

International Journal of
Information Technology

and Management

Vol. V, Issue No. I, August-
2013, ISSN 2249-4510

AN

INTERNATIONALLY

INDEXED PEER

REVIEWED &

REFEREED JOURNAL

A STUDY ON COST-EFFECTIVE, HIGH-
BANDWIDTH STORAGE ARCHITECTURE

www.ignited.in

http://www.research.rutgers.edu/~muralir/cs671-spring99/papers/nasd_cmu.pdf
http://www.research.rutgers.edu/~muralir/cs671-spring99/papers/nasd_cmu.pdf

Anuradha

w
w

w
.i

gn
it

e
d

.i
n

1

 International Journal of Information Technology and Management
Vol. V, Issue No. I, August-2013, ISSN 2249-4510

A Study On Cost-Effective, High-Bandwidth
Storage Architecture

Anuradha

Assistant Professor, Dronacharya Institute of Management & Technology, Kurukshetra, Haryana - 136118

Abstract – This paper describes the Network-Attached Secure Disk (NASD) storage architecture,
prototype implementations of NASD drives, array management for our architecture and three file systems
built on our prototype. NASD provides scalable storage bandwidth without the cost of servers used
primarily for transferring data from peripheral networks e.g. SCSI to client networks e.g. ethernet.
Increasing dataset sizes, new attachment technologies, the convergence of peripheral and inter-
processor switched networks, and the increased availability of on-drive transistors motivate and enable
this new architecture. NASD is based on four main principles: direct transfer to clients, secure interfaces
via cryptographic support, asynchronous non-critical-path oversight, and variably-sized data objects.
Measurements of our prototype system show that these services can be cost effectively integrated into a
next generation disk drive ASIC. End-to-end measurements of our prototype drive and file systems
suggest that NASD can support conventional distributed file systems without performance degradation.
More importantly, we show scalable bandwidth for NASD-specialized file systems. Using a parallel data
mining application, NASD drives deliver a linear scaling of 6.2 MB/s per client drive pair, tested with up to
eight pairs in our lab.

Keywords: File systems management, Distributed systems, Input/output and Data Communications.

---------------------------♦-----------------------------

INTRODUCTION

Demands for storage bandwidth continue to grow due
to rapidly increasing client performance, richer data
types such as video and data-intensive applications
such as data mining. For storage subsystems to
deliver scalable bandwidth, that is, linearly increasing
application bandwidth with increasing numbers of
storage devices and client processors, the data must
be striped over many disks and network links.

With 1998 technology, most office, engineering, and
data processing shops have sufficient numbers of
disks and scalable switched networking, but they
access storage through storage controller and
distributed fileserver bottlenecks. These bottlenecks
arise because a single “server” computer receives data
from the storage (peripheral) network and forwards it
to the client (local area) network while adding functions
such as concurrency control and metadata
consistency. A variety of research projects have
explored techniques for scaling the number of
machines used to enforce the semantics of such
controllers.

Scaling the number of machines devoted to store-and-
forward copying of data from storage to client networks
is expensive. This paper makes a case for new
scalable bandwidth storage architecture, Network-

Attached Secure Disks (NASD), which separates
management and file system semantics from store-
and-forward copying. By evolving the interface for
commodity storage devices (SCSI-4 perhaps), we
eliminate the server resources required solely for
data movement. As with earlier generations of SCSI,
the NASD interface is simple, efficient and flexible
enough to support a wide range of file system
semantics across multiple generations of technology.
To demonstrate how NASD architecture can deliver
scalable bandwidth, we describe a prototype
implementation of NASD, a storage manager for
NASD arrays, and a simple parallel file system that
delivers scalable bandwidth to a parallel data-mining
application.

Figure 1 illustrates the components of a NASD
system and indicates the sections describing each.

http://www.research.rutgers.edu/~muralir/cs671-spring99/papers/nasd_cmu.pdf
http://www.research.rutgers.edu/~muralir/cs671-spring99/papers/nasd_cmu.pdf

Anuradha

w
w

w
.i

gn
it

e
d

.i
n

2

 A Study On Cost-Effective, High-Bandwidth Storage Architecture

OBJECTIVES OF THE STUDY

The objectives of the current study are as follows:

 To study the architecture of NASD
architecture.

 To study the cost-effective, high bandwidth
storage architecture.

REVIEW OF RELATED LITAERATURE

Aggarwal (2010) studied that if the server offers a
simple file access interface to clients, the organization
is known as a distributed file system. If the server
processes data on behalf of the clients, this
organization is a distributed database.

In organization, data makes a second network trip to
the client and the server machine can become a
bottleneck, particularly since it usually serves large
numbers of disks to better amortize its cost.

Anderson (2006) explained the limitations of using a
single central fileserver are widely recognized.
Companies such as Auspex and Network Appliance
have attempted to improve file server performance,
specifically the number of clients supported, through
the use of special purpose server hardware and highly
optimized software.

Baker(2011) suggested a method to transparently
improve storage bandwidth and reliability many
systems interpose another computer, such as a RAID
controller. This organization adds another peripheral
network transfer and store-and-forward stage for data
to traverse.

Provided that the distributed file system is reorganized
to logically “DMA” data rather than copy it through its
server, a fourth organization reduces the number of
network transits for data to two. This organization has
been examined extensively and is in use in the HPSS
implementation of the Mass Storage Reference Model.

Benner(2006) studied that organization also applies to
systems where clients are trusted to maintain file
system metadata integrity and implement disk striping
and redundancy. In this case, client caching of
metadata can reduce the number of network transfers
for control messages and data to two. Moreover, disks
can be attached to client machines which are
presumed to be independently paid for and generally
idle. This eliminates additional store-and-forward cost,
if clients are idle, without eliminating the copy itself.

Figure 2 illustrates the principal alternative storage
architectures:

(1) A local file system,

(2) A distributed file system (DFS) built directly on
disks,

(3) A distributed file system built on a storage
subsystem,

(4) A network-DMA distributed file system,

(5) A distributed file system using smart object-
based disks (NASD) and

(6) A distributed file system using a second level
of objects for storage management.

Acharya (2008) observed that the simplest
organization aggregates the application, file
management (naming, directories, access control, and
concurrency control) and low-level storage
management. Disk data makes one trip over a simple
peripheral area network such as SCSI or Fiber
channel and disks offer a fixed-size block
abstraction. Stand-alone computer systems use this
widely understood organization.

NASD architecture embeds the disk management
functions into the device and offers a variable-length
object storage interface. In this organization, file
managers enable repeated client accesses to
specific storage objects by granting a catchable
capability.

once and there is no expensive store-and-forward
computer.

The idea of a simple, disk-like network-attached
storage server as a building block for high-level
distributed file systems has been around for a long
time. Cambridge’s Universal File Server (UFS) used
an abstraction similar to NASD along with a
directory-like index structure.

The UFS would reclaim any space that was not
reachable from a root index. The successor project
at Cambridge, CFS, also performed automatic
reclamation and added undoable (for a period of time
after initiation) transactions into the file system
interface. To minimize coupling of file manager and
device implementations, NASD offers less powerful
semantics, with no automatic reclamation or
transaction rollback.

Boden (2011) explained that NASD partitions are
variable-sized groupings of objects, not physical
regions of disk media, enabling the total partition

Anuradha

w
w

w
.i

gn
it

e
d

.i
n

3

 International Journal of Information Technology and Management
Vol. V, Issue No. I, August-2013, ISSN 2249-4510

space to be managed easily, in a manner similar to
virtual volumes or virtual disks.

We also believe that specific implementations can
exploit NASD’s uninterrupted file system-specific
attribute fields to respond to higher-level capacity
planning and reservation systems such as HP’s
attribute-managed storage.

Object-based storage is also being pursued for quality-
of-service at the device, transparent performance
optimizations, and drive supported data sharing.

ISI’s Netstation project proposes a form of object-
based storage called Derived Virtual Devices (DVD) in
which the state of an open network connection is
augmented with access control policies and object
metadata, provided by the file manager using
Kerberos for underlying security guarantees. This is
similar to NASD’s mechanism except that NASD’s
access control policies are embedded in unforgeable
capabilities separate from communication state, so
that their interpretation persists (as objects) when a
connection is terminated. Moreover, Netstation’s use
of DVD as a physical partition server in VISA is not
similar to our use of NASD as a single object server in
a parallel distributed file system.

Cabrera (2011) studied that NASD security is based
on capabilities, a well-established concept for
regulating access to resources. In the past, many
systems have used capabilities that rely on hardware
support or trusted operating system kernels to protect
system integrity. Within NASD, we make no
assumptions about the integrity of the client to properly
maintain capabilities. Therefore, we utilize
cryptographic techniques similar to ISCAP and
Amoeba. In these systems, both the entity issuing a
capability and the entity validating a capability must
share a large amount of private information about all of
the issued capabilities. These systems are generally
implemented as single entities issuing and validating
capabilities, while in NASD these functions are done in
distinct machines and no per-capability state is
exchanged between issuer and validator.

RESEARCH METHODOLOGY

Storage architecture is ready to change as a result of
the synergy between five overriding factors: I/O bound
applications, new drive attachment technologies, an
excess of ondrive transistors, the convergence of
peripheral and inter-processor switched networks, and
the cost of storage systems.

Traditional distributed file system workloads are
dominated by small random accesses to small files
whose sizes are growing with time, though not
dramatically. In contrast, new workloads are much
more I/O-bound, including data types such as video

and audio, and applications such as data mining of
retail transactions, medical records or
telecommunication call records.

The same technology improvements that are
increasing disk density by 60% per year are also
driving up disk bandwidth at 40% per year. High
transfer rates have increased pressure on the physical
and electrical design of drive busses, dramatically
reducing maximum bus length. At the same time,
people are building systems of clustered computers
with shared storage. For these reasons, the storage
industry is moving toward encapsulating drive
communication over Fibre channel, a serial, switched,
packet-based peripheral network that supports long
cable lengths, more ports, and more bandwidth. One
impact of NASD is to evolve the SCSI command set
that is currently being encapsulated over Fiber
channel to take full advantage of the promises of that
switched-network technology for both higher
bandwidth and increased flexibility.

The increasing transistor density in inexpensive ASIC
technology has allowed disk drive designers to lower
cost and increase performance by integrating
sophisticated special-purpose functional units into a
small number of chips. Figure shows the block
diagram for the ASIC at the heart of Quantum’s
Trident drive.

When drive ASIC technology advances from 0.68
micron CMOS to 0.35 micron CMOS, they could
insert a 200 MHz Strong ARM microcontroller,
leaving 100,000 gate-equivalent space for functions
such as on-chip DRAM or cryptographic support.
While this may seem like a major jump, Siemen’s Tri
Core integrated microcontroller and ASIC architecture
promises to deliver a 100 MHz, 3-way issue,

In a NASD-adapted file system, files and directories
are stored in NASD objects. The mapping of files and
directories to objects depends upon the file system.

Anuradha

w
w

w
.i

gn
it

e
d

.i
n

4

 A Study On Cost-Effective, High-Bandwidth Storage Architecture

For our NFS and AFS ports, we use a simple
approach: each file and each directory occupies
exactly one NASD object and offsets in files are the
same as offsets in objects. This allows common file
attributes e.g. file length and last modify time to
correspond directly to NASD-maintained object
attributes. The remainder of the file attributes e.g.
owner and mode bits are stored in the object’s
uninterrupted attributes. Because the file system
makes policy decisions based on these file attributes,
the client may not directly modify object metadata;
commands that may impact policy decisions such as
quota or access rights must go through the file
manager.

The combination of a stateless server, weak cache
consistency, and few file system management
mechanisms make porting NFS to a NASD
environment straightforward. Data moving operations
(read, write) and attribute reads (getattr) are directed
to the NASD drive while all other requests are handled
by the file manager. Capabilities are piggybacked on
the file manager’s response to lookup operations. File
attributes are either computed from NASD object
attributes e.g. modify times and object size or stored in
the uninterpreted file system-specific attribute.

AFS is a more complex distributed file system
personality, but is also readily mapped to a NASD
environment. As with NFS, data-moving requests
(Fetch Data, Store Data) and attribute reads (Fetch
Status, Bulk Status) are directed to NASD drives, while
all other requests are sent to the file manager.
Because AFS clients perform lookup operations by
parsing directory files locally, there was no obvious
operation on which to piggyback the issuing of
capabilities so AFS RPCs were added to obtain and
relinquish capabilities explicitly. AFS’s sequential
consistency is provided by breaking callbacks
(notifying holders of potentially stale copies) when a
write capability is issued. With NASD, the file manager
no longer knows that a write operation arrived at a
drive so must inform clients as soon as a write may
occur. The issuing of new callbacks on a file with an
outstanding write capability is blocked. Expiration
times set by the file manager in every capability and
the ability to directly invalidate capabilities allows file
managers to bound the waiting time for a callback.

AFS also requires enforcement of a per-volume quota
on allocated disk space. This is more difficult in NASD
because quotas are logically managed by the file
manager on each write but the file manager is not
accessed on each write. However, because NASD has

a byte range restriction in its capabilities, the file
manager can create a write capability that escrows
space for the file to grow by selecting a byte range
larger than the current object. After the capability has
been relinquished to the file manager (or has expired),
the file manager can examine the object to determine
its new size and update the quota data structures
appropriately.

Both the NFS and AFS ports were straightforward.
Specifically, transfers remain quite small, directory
parsing in NFS is still done by the server, and the AFS
server still has a concurrency limitations caused by its
coroutine-based user level threads package. Our
primary goal was to demonstrate that simple
modifications to existing file systems allow NASD
devices to be used without performance loss. Using
the Andrew benchmark as a basis for comparison,
we found that NASD-NFS and NFS had benchmark
times within 5% of each other for configurations with
1 drive/1 client and 8 drives/8 clients. We do not
report AFS numbers because the AFS server’s
severe concurrency limitations would make a
comparison unfair.

NEED OF THE STUDY

To fully exploit the potential bandwidth in a NASD
system, higher-level file systems should make large,
parallel requests to files striped across multiple
NASD drives. Cheops exports the same object
interface as the underlying NASD devices and
maintains the mapping of these higher-level objects
to the objects on the individual devices. Our
prototype system implements a Cheops client library
that translates application requests and manages
both levels of capabilities across multiple NASD
drives. A separate Cheops storage manager
(possibly co-located with the file manager) manages
mappings for striped objects and supports
concurrency control for multi-disk accesses.

The Cheops client and manager is less than 10,000
lines of code. To provide support for parallel
applications, we implemented a simple parallel file
system, NASD PFS, which offers the SIO low-level
parallel file system interface and employs Cheops as
its storage management layer. We used MPICH for
communications within our parallel applications,
while Cheops uses the DCE RPC mechanism
required by our NASD prototype. To evaluate the
performance of Cheops, we used a parallel data
mining system that discovers association rules in
sales.

ANALYSIS OF THE STUDY

We have implemented a working prototype of the
NASD drive software running as a kernel module in
Digital UNIX. Each NASD prototype drive runs on a
DEC Alpha 3000/400 (133MHz, 64 MB, Digital UNIX
3.2g) with two Seagate ST52160 Medalist disks
attached by two 5 MB/s SCSI busses. While this is

Anuradha

w
w

w
.i

gn
it

e
d

.i
n

5

 International Journal of Information Technology and Management
Vol. V, Issue No. I, August-2013, ISSN 2249-4510

certainly a bulky “drive”, the performance of this five
year old machine is similar to what we predict will be
available in drive controllers soon. We use two
physical drives managed by a software striping driver
to approximate the 10 MB/s rates we expect from more
modern drives.

Because our prototype code is intended to operate
directly in a drive, our NASD object system implements
its own internal object access, cache, and disk space
management modules (a total of 16,000 lines of code)
and interacts minimally with Digital UNIX. For
communications, our prototype uses DCE RPC 1.0.3
over UDP/IP. The implementation of these networking
services is quite heavyweight. The appropriate
protocol suite and implementation is currently an issue
of active research.

CONCLUSION

Scalable storage bandwidth in clusters can be
achieved by striping data over both storage devices
and network links, provided that a switched network
with sufficient bisection bandwidth exists.
Unfortunately, the cost of the workstation server,
network adapters, and peripheral adapters generally
exceeds the cost of the storage devices, increasing
the total cost by at least 80% over the cost of simply
buying the storage.

We have presented a promising direction for the
evolution of storage that transfers data directly on the
client’s network and dramatically reduces this cost
overhead. Our scalable network-attached storage is
defined by four properties. First, it must support direct
device-to-client transfers. Second, it must provide
secure interfaces (e.g. via cryptography). Third, it must
support asynchronous oversight, whereby file
managers provide clients with capabilities that allow
them to issue authorized commands directly to
devices. Fourth, devices must serve variable-length
objects with separate attributes, rather than fixed-
length blocks, to enable self-management and avoid
the need to trust client operating systems.

To demonstrate these concepts, we have described
the design and implementation of a NASD prototype
that manages disks as efficiently as a UNIX file
system. Measurements of this prototype show that
available microprocessor cores embedded into the
ASIC of a modern disk drive should provide more than
adequate on-drive support for NASD, provided there is
cryptographic hardware support for the security
functions.

Using a simple parallel, distributed file system
designed for NASD, we show that the NASD
architecture can provide scalable bandwidth. We
report our experiments with a data mining application

for which we achieve 6.2 MB/s per client-drive pair in a
system up to 8 drives, providing 45 MB/s overall.

REFERENCES

 Acharaya, A. et al, Active Disks, ACM
ASPLOS, Oct 2008.

 Aggarwal (2010), R. and Srikant, R. Fast
Algorithms for Mining Association Rules,
VLDB, Sept 2010.

 Anderson et al. Serverless Network File
Systems, ACM TOCS 14(1), Feb 2006.

 Baker, M.G. et al. Measurements of a
Distributed File System”, ACM SOSP, Oct
2011.

 Bellare (2006), Keying Hash Functions for
Message Authentication, Crypto ‘2006.

 Benner, A.F., Fibre Channel: Gigabit
Communications and I/O for Computer
Networks, McGraw Hill, 2006.

 Boden et al. 2011: A Gigabit-per-Second
Local Area Network, IEEE Micro, Feb 2011.

 Cabrera (2011), Swift: Using Distributed Disk
Striping to Provide High I/O Data Rates,
Computing Systems 4:4, Fall 1991.

 Corbett (2010) Proposal for a Common
Parallel File System Programming Language,
Scalable I/O Initiative Cal Tech CACR 130,
Nov 2010.

 Dennis (2010), “Programming Semantics for
Multi-programmed Computations”, CACM 9,
3, 2010.

