

REVIEW ARTICLE

Study of Political Representations:
Diplomatic Missions of Early Indian to

Britain

Journal of
Advances and

Scholarly
Researches in

Allied
Education

Vol. 3, Issue 6,
April-2012,
ISSN 2230-

7540

International Journal of
Information Technology

and Management

Vol. V, Issue No. I, August-
2013, ISSN 2249-4510

AN

INTERNATIONALLY

INDEXED PEER

REVIEWED &

REFEREED JOURNAL

A NEW APPROACH OF DBMS ARCHITECTURE
FOR DATA ADMIITANCE IN MEMORY THROUGH

ANTI-CACHING TECHNIQUE

www.ignited.in

Abul Hasan Khan1 Dr. D. K. Pandey2

w
w

w
.i

gn
it

e
d

.i
n

1

 International Journal of Information Technology and Management
Vol. V, Issue No. I, August-2013, ISSN 2249-4510

A New Approach of DBMS Architecture for Data
Admiitance in Memory through Anti-Caching

Technique

Abul Hasan Khan1 Dr. D. K. Pandey2

1
Research Scholar, CMJ University, Shillong, Meghalaya

2
Assistant Professor

Abstract – The traditional wisdom for building disk-based relational database management systems
(DBMS) is to organize data in heavily-encoded blocks stored on disk, with a main memory block cache. In
order to improve performance given high disk latency, these systems use a multi-threaded architecture
with dynamic record-level locking that allows multiple transactions to access the database at the same
time.

Previous research has shown that this results in substantial overhead for on-line transaction processing
(OLTP) applications. The next generation DBMSs seek to overcome these limitations with architecture
based on main memory resident data. To overcome the restriction that all data fit in main memory, we
propose a new technique, called anti-caching, where cold data is moved to disk in a transaction ally-safe
manner as the database grows in size. Because data initially resides in memory, an anti-caching
architecture reverses the traditional storage hierarchy of disk-based systems. Main memory is now the
primary storage device.

We implemented a prototype of our anti-caching proposal in a high-performance, main memory OLTP
DBMS and performed a series of experiments across a range of database sizes, workload skews, and
read/write mixes. We compared its performance with an open-source, disk-based DBMS optionally
fronted by a distributed main memory cache. Our results show that for higher skewed workloads the anti-
caching architecture has a performance advantage over either of the other architectures tested of up to
9x for a data size 8x larger than memory.

In this paper, we analyze state-of-the-art approaches to achieving this goal for in-memory databases,
which is called as “Anti-Caching” to distinguish it from traditional caching mechanisms. We conduct
extensive experiments to study the effect of each fine-grained component of the entire process of “Anti-
Caching” on both performance and prediction accuracy. To avoid the interference from other unrelated
components of specific systems, we implement these approaches on a uniform platform to ensure a fair
comparison. We also study the usability of each approach, and how intrusive it is to the systems that
intend to incorporate it. Based on our findings, we propose some guidelines on designing a good “Anti-
Caching” approach, and sketch a general and efficient approach, which can be utilized in most in-
memory database systems without much code modification.

---------------------------♦-----------------------------

INTRODUCTION

Data is invaluable in product prediction, scientific
exploration, business intelligence, and so on.
However, the sheer quantity and velocity of Big Data
have caused problems in data capturing, storage,
maintenance, analysis, search, and visualization. The
management of a huge amount of data is particularly
challenging to the design of database architectures.

In addition, in many instances when dealing with Big
Data, speed is not an option but a must. For example,
Facebook makes an average of 130 internal requests
sequentially for generating the HTML for a page, thus
making long latency data access unacceptable.
Supporting ultra-low latency service is therefore a
requirement. Effective and smart decision making is
enabled with the utilization of Big Data, however, on
the condition that real-time analytics is possible.
Otherwise, profitable decisions could become stale
and useless. Therefore, efficient real-time data

Abul Hasan Khan1 Dr. D. K. Pandey2

w
w

w
.i

gn
it

e
d

.i
n

2

 A New Approach of DBMS Architecture for Data Admiitance in Memory through Anti-Caching
Technique

analytics is important and necessary for modern
database systems.

Distributed and No SQL databases have been
designed for large scale data processing and high
scalability, while the Map-Reduce framework provides
a parallel and robust solution to complex data
computation. Synchronous Pregel-like message-
passing or asynchronous Graph Lab processing
models have been utilized to tackle large graph
analysis, and stream processing systems have been
designed to deal with the high velocity of data
generation. Recently, in-memory database systems
have gained traction as a means to significantly boost
the performance.

Towards In-memory Databases - The performance
of disk-based databases, slowed down by
unpredictable and high access latency of disks, is no
longer acceptable in meeting the rigorous low-latency,
real-time demands of Big Data. The performance issue
is further exacerbated by the overhead (e.g., system
calls, buffer manager) hidden by the I/O flow. To meet
the strict real-time requirements for analyzing massive
amount of data and servicing requests within
milliseconds, an in-memory database that keeps data
in the main memory all the time is a promising
alternative.

In-memory databases have been studied as early as
the 80s. Recent advances in hardware technology re-
kindled the interest in implementing in-memory
databases as a means to provide faster data accesses
and real-time analytics. Most commercial database
vendors (e.g., SAP, Microsoft, Oracle) have begun to
introduce in-memory databases to support large-scale
applications completely in memory. Nevertheless, in-
memory data management is still at its infancy with
many challenges, and a completely in-memory design
is not only still prohibitively expensive, but also
unnecessary. Instead, it is important to have a
mechanism for in-memory databases that utilize both
memory and disks effectively. It is similar to the
traditional caching process, which is however the other
way around: instead of fetching data that is needed
from disk into main memory, cold data is evicted to
disk, and fetched again only when needed. In this
case, main memory is treated as the main storage,
while disk acts as a backup. We call it as “Anti-
Caching”, to emphasize the opposite direction of data
movement. The goal of “Anti-Caching” is to enable in-
memory databases to have the “capacity as data,
speed as memory and price as disk”, being a hybrid
and alternative between strictly memory based and
disk-based databases.

Fig. 1: Caching vs “Anti-Caching”

THE ANTI-CACHING ARCHITECTURE

The ideal system for these larger-than-memory on-line
transaction processing (OLTP) datasets would have
similar performance to a main memory system while
scaling to handle larger-than-memory datasets as
gracefully as a traditional disk-based system. To
address this need, we have constructed a new
architecture for main memory database systems
called anti-caching. The goal of anticaching is to
allow the DBMS to handle larger-than-memory
datasets while still maintaining a throughput
advantage over a traditional disk-based architecture.
To do this, we take advantage of the skew inherent
in most on-line transaction processing (OLTP)
workloads. In a DBMS with anti-caching, when
memory is exhausted, the DBMS gathers the
“coldest” tuples and writes them to the on-disk anti-
cache with minimal translation from their main
memory format, thereby freeing up space for more
recently accessed tuples. As such, the “hotter” data
resides in main memory, while the colder data
resides on disk in the anti-cache portion of the
system.

Unlike a traditional DBMS architecture, tuples do not
reside in both places; each tuple is either in memory
or in a disk block, but never in both places at the
same time. In this new architecture, main memory,
rather than disk, becomes the primary storage
location. Rather than starting with data on disk and
reading hot data into the cache, data starts in
memory and cold data is evicted to the anti-cache on
disk. This is the inverse of what happens in a
traditional disk-based architecture where hot data is
cached in the buffer pool, and for this reason we call
this approach anti-caching.

Abul Hasan Khan1 Dr. D. K. Pandey2

w
w

w
.i

gn
it

e
d

.i
n

3

 International Journal of Information Technology and Management
Vol. V, Issue No. I, August-2013, ISSN 2249-4510

Figure 2: An overview of architecture for larger-than-
memory OLTP datasets. In (a) and (b), the disk is the
primary storage for the database and data is brought
into main memory as it is needed. With the anti-
caching model shown in (c), memory is the primary
storage and cold data is evicted to disk.

The first is that anti-caching is non-blocking. In a virtual
memory system, the OS blocks a process when it
incurs a page fault from reading a memory address
that is on disk. For certain DBMSs, this means that no
transactions are executed while the virtual memory
page is being fetched from disk. In an anti-caching
DBMS, a transaction that accesses evicted data is
simply aborted and then restarted at a later point once
the data that it needs is retrieved from disk. In the
meantime, the DBMS continues to execute other
transactions without blocking. Lastly, since every page
fault triggers a disk read, queries that access multiple
evicted pages will page fault several times in a
sequential fashion. We instead use a pre-pass
execution phase that attempts to identify all evicted
blocks needed by a transaction, which will allow all
blocks to be read together. Another key advantage of
anti-caching over virtual memory is the granularity at
which data can be evicted. In anti-caching, eviction
decisions are performed at the tuple-level.

The goal of anti-caching is to get the performance
benefits of a main memory system while being able to
scale to datasets larger than main memory. In general,
there are only three architectures that are able to
handle larger-than-memory on-line transaction
processing (OLTP) datasets: (1) a traditional disk-
based architecture, (2) a traditional disk-based
architecture fronted by a main memory distributed
cache, and (3) an anti-caching architecture.

STATE-OF-THE-ART APPROACHES

In general, state-of-the-art “Anti-Caching” approaches
can be classified into three categories.

1) User-space: “Anti-Caching” performed in the
userspace is the most commonly used
approach. This enables ad hoc optimizations
based on application semantics and fine-
grained operations. On the other hand, the
need to cross the OS boundary for I/O
introduces additional overhead and
constraints.

2) Kernel-space: Virtual memory management
(VMM), which is available in most operating
systems, can be regarded as a simple and
general solution for “Anti-Caching” since the
current generation of 64-bit OS supports up to
128 TB (247 bytes) of virtual address space,
which is sufficient for most database
applications. However, due to the lack of

upper-layer application semantics, kernel
space solutions often suffer from inaccurate
eviction decisions.

Furthermore, the constraint of operating in units of
pages when swapping data incurs extra overhead.

3) Hybrid of user- and kernel-space: A hybrid
approach that combines the advantages from
both semantics-aware user-space and
hardware-assisted kernel-space approaches is
promising. This can be done in either a user-
centric or kernel centric way. Such an
approach would exploit the application’s
semantics as well as the efficiency provided
by the OS in handling disk I/O, access
tracking and book-keeping. It can also act as
a general approach for most systems, rather
than an ad hoc solution for a specific system.

ANTI-CACHING SYSTEM MODEL

We call our architecture anti-caching since it is the
opposite architecture to the traditional DBMS buffer
pool approach. The disk is used as a place to spill
cold tuples when the size of the database exceeds
the size of main memory. As stated earlier, unlike
normal caching, a tuple is never copied. It lives in
either main memory or the disk based anti-cache.

At runtime, the DBMS monitors the amount of main
memory used by the database. When the size of the
database relative to the amount of available memory
on the node exceeds some administrator defined
threshold, the DBMS “evicts” cold data to the anti-
cache in order to make space for new data. To do
this, the DBMS constructs a fixed-size block that
contains the least recently used (LRU) tuples from
the database and writes that block to the anti-cache.
It then updates a memory-resident catalog that keeps
track of every tuple that was evicted. When a
transaction accesses one of these evicted tuples, the
DBMS switches that transaction into a “pre-pass”
mode to learn about all of the tuples that the
transaction needs. After this pre-pass is complete,
the DBMS then aborts that transaction (rolling back
any changes that it may have made) and holds it
while the system retrieves the tuples in the
background. Once the data has been merged back
into the in-memory tables, the transaction is released
and restarted.

We now describe the underlying storage architecture
of our antic ache implementation. We then discuss
the process of evicting cold data from memory and
storing it in the non-volatile anti-cache. Then, we
describe how the DBMS retrieves data from the antic
ache. All of the DBMS’s operations on the anti-cache

Abul Hasan Khan1 Dr. D. K. Pandey2

w
w

w
.i

gn
it

e
d

.i
n

4

 A New Approach of DBMS Architecture for Data Admiitance in Memory through Anti-Caching
Technique

are transactional and any changes are both persistent
and durable.

Storage Architecture - The anti-cache storage
manager within each partition contains three
components: (1) a disk-resident hash table that stores
evicted blocks of tuples called the Block Table, (2) an
in-memory Evicted Table that maps evicted tuples to
block ids, and (3) an in-memory LRU Chain of tuples
for each table. As with all tables and indexes in H-
Store, these data structures do not require any latches
since only one transaction is allowed to access them
at a time.

Block Eviction - Ideally, our architecture would be
able to maintain a single global ordering of tuples in
the system, thus globally tracking hot and cold data.
However, the costs of maintaining a single chain
across partitions would be prohibitively expensive due
to the added costs of inter-partition communication.
Instead, our system maintains a separate LRU Chain
per table that is local to a partition. Thus, in order to
evict data the DBMS must determine (1) what tables to
evict data from and (2) the amount of data that should
be evicted from a given table. For our initial
implementation, the DBMS answers these questions
by the relative skew of accesses to tables.

The amount of data accessed at each table is
monitored, and the amount of data evicted from each
table is inversely proportional to the amount of data
accessed in the table since the last eviction. Thus, the
hotter a table is, the less data will be evicted. For the
benchmarks tested, this approach is sufficient, but we
expect to consider more sophisticated schemes in the
future.

Transaction Execution - Main memory DBMSs, like
H-Store, owe their performance advantage to
processing algorithms that assume that data is in main
memory. But any system will slow down if a disk read
must be processed in the middle of a transaction. This
means that we need to avoid stalling transaction
execution at a partition whenever a transaction
accesses an evicted tuple. We now describe how this
is accomplished with anti-caching.

Block Retrieval - After aborting a transaction that
attempts to access evicted tuples the DBMS
schedules the retrieval of the blocks that the
transaction needs from the Block Table in two steps.
The system first issues a non-blocking read to retrieve
the blocks from disk. This operation is performed by a
separate thread while regular transactions continue to
execute at that partition. The DBMS stages these
retrieved blocks in a separate buffer that is not
accessible to queries. Any transaction that attempts to
access an evicted tuple in one of these blocks is
aborted as if the data was still on disk.

Distributed Transactions - Our anti-caching model
also supports distributed transactions. H-Store will
switch a distributed transaction into the “pre-pass”

mode just as a single-partition transaction when it
attempts to access evicted tuples at any one of its
partitions. The transaction is aborted and not required
until it receives a notification that all of the blocks that
it needs have been retrieved from the nodes in the
cluster. The system ensures that any in-memory tuples
that the transaction also accessed at any partition are
not evicted during the time that it takes for each node
to retrieve the blocks from disk.

ANTI-CACHE MEMORY OPTIMIZATIONS

One of the assumptions made in the design of the anti-
caching architecture is that workload skew is very
dynamic, and will likely change throughout the course
of workload execution.

Because of this, we decided that all workload
tracking (i.e., the mechanisms used to determine
how recently or frequently a tuple has been
accessed) should also be done dynamically, on-line,
during the normal execution of transactions. If it was
the case that workload skew is present, but is
relatively static, it would be possible to determine the
hot and cold areas of data offline, and give this
information to the system at runtime in order to guide
eviction policies. This approach of learning workload
skew offline in the context of main memory
databases has been explored in previous work.
However, this approach is unlikely to adapt to a
quickly changing workload skew. In this paper, we
proposed an approximation of an LRU eviction policy
where transactions are randomly sampled from the
workload, where, if selected, the transaction will
cause an update to the LRU chain depending on
which tuples are accessed. The control over the
sampling rate allows control over how aggressively
transactions are sampled, with more transactions
being sampled more likely to adapt to changing
workload conditions but incurring additional
overhead in updating the LRU chain. The runtime
performance of updating the LRU chain is negligible.

However, the time taken to update the LRU chain is
only part of the cost. The other is the memory
overhead of storing the LRU chain information. In the
current implementation, each tuple in the LRU chain
stores a 4-byte ID of both the previous and next tuple
in the chain. Given that the point of anti-caching is to
allow the system to better-utilize the available
memory resources, this memory overhead is less
than ideal. This memory overhead also means that
anti-caching is more effective on larger tuple sizes,
since more memory can be reclaimed each time a
tuple is evicted relative to the in-memory per-tuple
overhead of anti-caching.

For an anti-caching architecture, determining hot and
cold tuples is an essential part of evicting data to
disk, since evicting hot data to disk would have a
significant negative impact on system performance.
While the LRU chain is one way to do this, it requires
the additional memory overhead of storing the LRU

Abul Hasan Khan1 Dr. D. K. Pandey2

w
w

w
.i

gn
it

e
d

.i
n

5

 International Journal of Information Technology and Management
Vol. V, Issue No. I, August-2013, ISSN 2249-4510

chain pointers in memory. In this section we present a
timestamp-based method for tracking when tuples are
accessed. Like the aLRU method, this is an
approximate approach, with the goal of evicting some
of the cold tuples, not necessarily the coldest tuples,
which requires maintaining and exact ordering of when
tuples are accessed. The basic idea of using
timestamps is that each tuple is assigned a n-byte
timestamp that can be controlled depending on the
granularity of the eviction decisions desired. At
runtime, each time a tuple is accessed; its
corresponding timestamp is updated to the current
system timestamp, which will depend on the number of
bytes used in the timestamp. During eviction, a sample
of tuples is selected, and those with the oldest
timestamp are evicted. The number of tuples selected
in a sample can be controlled to improve the likelihood
that older tuples are chosen; the larger then sample
size relative to the number of tuples to evict, the higher
the likelihood that the tuples selected for eviction will
be among the coldest.

CONCLUSION

In this paper, we presented a new architecture for
managing datasets that are larger than the available
memory while executing OLTP workloads. With anti-
caching, memory is the primary storage and cold data
is evicted to disk. Cold data is fetched from disk as
needed and merged with in-memory data while
maintaining transactional consistency. We also
presented an analysis of our antic aching model on
two popular OLTP benchmarks, namely YCSB and
TPC-C, across a wide range of data sizes and
workload parameters.

On the workloads and data sizes tested our results are
convincing. For skewed workloads with data 8x the
size of memory, anti-caching has an 8x-17x
performance advantage over a disk-based DBMS and
a 2x-9x performance advantage over the same disk-
based system fronted with a distributed main memory
cache. We conclude that for OLTP workloads, in
particular those with skewed data access, the results
of this study demonstrate that anti-caching can
outperform traditional architectures popular today.

The “Anti-Caching” approach enables in-memory
database systems to handle big data. In this paper, we
conducted an indepth study on the state-of-the-art
“Anti-Caching” approaches that are available in user-
and kernel-spaces by considering both CPU and I/O
performance, and their consequential runtime system
throughput. We found that user- and kernelspace
approaches exhibit strengths in different areas. More
application semantics information is available to user-
space approaches which also have finer operation
granularity. This enables a more accurate eviction
strategy.

REFERENCES

 Kemper and T. Neumann. HyPer: A hybrid
OLTP&OLAP main memory database system
based on virtual memory snapshots. ICDE,
pages 195–206, 2011.

 Fitzpatrick and A. Vorobey, “Memcached: a
distributed memory object caching system,”
http://memcached.org/, 2003.

 Fitzpatrick. Distributed Caching with
Memcached. Linux J., 2004(124):5–, Aug.
2004.

 R. K. Ports, A. T. Clements, I. Zhang, S.
Madden, and B. Liskov. Transactional
consistency and automatic management in
an application data cache. OSDI’10, pages
1–15, 2010.

 Sidlauskas and C. S. Jensen, “Spatial joins in
main memory: Implementation matters!” in
PVLDB ’15, 2014, pp. 97–100.

 Graefe, H. Volos, H. Kimura, H. Kuno, J.
Tucek, M. Lillibridge, and A. Veitch, “In-
memory performance for big data,” in PVLDB
’15, 2014.

 J. Baulier, P. Bohannon, S. Gogate, S. Joshi,
C. Gupta, A. Khivesera, H. F. Korth, P.
McIlroy, J. Miller, P. P. S. Narayan, M.
Nemeth, R. Rastogi, A. Silberschatz, and S.
Sudarshan. Datablitz: A high performance
main-memory storage manager. VLDB,
pages 701–, 1998.

 J. DeBrabant, A. Pavlo, S. Tu, M.
Stonebraker, and S. Zdonik. Anti-caching: A
new approach to database management
system architecture. Proc. VLDB Endow.,
6(14): 1942–1953, Sept. 2013. ISSN 2150-
8097.

 S. Harizopoulos, D. J. Abadi, S. Madden, and
M. Stonebraker. OLTP through the looking
glass, and what we found there. In SIGMOD,
pages 981–992, 2008. ISBN 978-1-60558-
102-6.

