

REVIEW ARTICLE

Study of Political Representations:
Diplomatic Missions of Early Indian to

Britain

Journal of
Advances and

Scholarly
Researches in

Allied
Education

Vol. 3, Issue 6,
April-2012,
ISSN 2230-

7540

International Journal of
Information Technology

and Management

Vol. VI, Issue No. II,
May-2014, ISSN 2249-4510

AN

INTERNATIONALLY

INDEXED PEER

REVIEWED &

REFEREED JOURNAL

AN ANALYSIS ON THE ANATOMY OF A LARGE
SCALE HYPERTEXTUAL WEB SEARCH ENGINE

AND A WEB CRAWLER APPLICATION

www.ignited.in

Ms. Rubina Khan

w
w

w
.i

gn
it

e
d

.i
n

1

 International Journal of Information Technology and Management
Vol. VI, Issue No. II, May-2014, ISSN 2249-4510

An Analysis on the Anatomy of a Large Scale
Hypertextual Web Search Engine and a Web

Crawler Application

Ms. Rubina Khan

Asst. Prof. Immersive Institute of Technology

Abstract – In this paper, we present Google, a prototype of a large-scale search engine which makes
heavy use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently
and produce much more satisfying search results than existing systems. The prototype with a full text and
hyperlink database of at least 24 million pages is available at http://google.stanford.edu/ To engineer a
search engine is a challenging task. Search engines index tens to hundreds of millions of web pages
involving a comparable number of distinct terms. They answer tens of millions of queries every day.
Despite the importance of large-scale search engines on the web, very little academic research has been
done on them. Furthermore, due to rapid advance in technology and web proliferation, creating a web
search engine today is very different from three years ago. This paper provides an in-depth description of
our large-scale web search engine – the first such detailed public description we know of to date. Apart
from the problems of scaling traditional search techniques to data of this magnitude, there are new
technical challenges involved with using the additional information present in hypertext to produce better
search results. This paper addresses this question of how to build a practical large-scale system which
can exploit the additional information present in hypertext. Also we look at the problem of how to
effectively deal with uncontrolled hypertext collections where anyone can publish anything they want.

To engineer a search engine is a challenging task. Search engines index tens to hundreds of millions of
Web pages involving a comparable number of distinct terms. They answer tens of millions of queries
every day. Despite the importance of large-scale search engines on the Web, very little academic research
has been done on them. Furthermore, due to rapid advance in technology and Web proliferation, creating
a Web search engine today is very different from three years ago. This paper provides an in-depth
description of our large-scale Web search engine — the first such detailed public
description we know of to date.

Apart from the problems of scaling traditional search techniques to data of this magnitude, there are new
technical challenges involved with using the additional information present in hypertext to produce better
search results.

---------------------------♦-----------------------------

INTRODUCTION

The ability to browse is generally regarded as one of
the most important reasons for using hypertext, while
searching facilities should also be supported in
modern hypertext environments. The World Wide Web
is such a hypertext environment. Because of its huge
scale and arbitrary structure, it creates many
challenges for the development of its searching
capabilities.

In the current Web, most links are not typed, and there
is no link-based composition mechanism. Thus the
Web lacks explicit structural meta information, and the
search engines on it are typically keyword-based. With
such engines, people usually get a large amount of
pages that they cannot process, or even more, many
of the pages are totally irrelevant to their information

needs, especially when they search for information
on specific topics.

To improve the ability of expressing structures and
semantics on the Web, several new standards,
mainly XML (Extensible Markup Language) and RDF
(Resource Description Framework), are developed or
under development. These standards open new
opportunities to improve the information access on
the Web. However, it is an open question how to
make use of the structural and semantic information
that can be represented with the standards efficiently
for search purposes. This paper describes a part of
our effort to answer this question.

In this work, we focus on making use of hypertext
contexts, one of the main highlevel hypermedia
structures that can be represented with the new Web

Ms. Rubina Khan

w
w

w
.i

gn
it

e
d

.i
n

2

 An Analysis on the Anatomy of a Large Scale Hypertextual Web Search Engine and a Web Crawler
Application

standards for searching on the Web. We view a
hypertext context as a mechanism to specify the scope
of the information space to be examined in a search
and argue that this would help to improve the search
response time and the quality of the results of
searches concerning a specific topic or subject
domain.

The web creates new challenges for information
retrieval. The amount of information on the web is
growing rapidly, as well as the number of new users
inexperienced in the art of web research. People are
likely to surf the web using its link graph, often starting
with high quality human maintained indices such as
Yahoo! or with search engines. Human maintained
lists cover popular topics effectively but are subjective,
expensive to build and maintain, slow to improve, and
cannot cover all esoteric topics.

Automated search engines that rely on keyword
matching usually return too many low quality matches.
To make matters worse, some advertisers attempt to
gain people’s attention by taking measures meant to
mislead automated search engines. We have built a
large-scale search engine which addresses many of
the problems of existing systems. It makes especially
heavy use of the additional structure present in
hypertext to provide much higher quality search
results. We chose our system name, Google, because
it is a common spelling of googol, or 10100 and fits
well with our goal of building very large-scale search.

Engineering a search engine is a challenging task.
Search engines index tens to hundreds of millions of
web pages involving a comparable number of distinct
terms. They answer tens of millions of queries every
day. Despite the importance of large-scale search
engines on the web, very little academic research has
been conducted on them.

Furthermore, due to rapid advance in technology and
web proliferation, creating a web search engine today
is very different from three years ago. A search engine
finds information for its database by accepting listings
sent in by authors who want exposure, or by getting
the information from their "web crawlers," "spiders," or
"robots," programs that roam the Internet storing links
to and information about each page they visit. A web
crawler is a program that downloads and stores Web
pages, often for a Web search engine. Roughly, a
crawler starts off by placing an initial set of URLs, S0,
in a queue, where all URLs to be retrieved are kept
and prioritized. From this queue, the crawler gets a
URL (in some order), downloads the page, extracts
any URLs in the downloaded page, and puts the new
URLs in the queue. This process is repeated until the
crawler decides to stop. Collected pages are later
used for other applications, such as a Web search
engine or a Web cache.

The most important measure for a search engine is the
search performance, quality of the results and ability to
crawl, and index the web efficiently. The primary goal

is to provide high quality search results over a rapidly
growing World Wide Web. Some of the efficient and
recommended search engines are Google, Yahoo and
Teoma, which share some common features and are
standardized to some extent.

THE WORLD BEFORE GOOGLE

With the birth of the World Wide Web (WWW), the
usage of the Internet has grown dramatically. One of
the _rst search engines, the World Wide Web Worm,
had an index of around 110,000 web pages and it
received about 1500 queries per day by 1994 - only 4
years after WWW's creation. By November 1997,
Altavista, one of the more popular web search engines
during that time, claimed to handle roughly 20 million
queries per day and indexed over tens of millions of
web pages. (As of January 2005, the number of web
pages grew to over 11.5 billion and Google claims to
process nearly 90 million queries per day.)

Although the number of the users accessing the web
has been growing rapidly, the way they access it
remained pretty much the same. People tend to surf
the web using a graph of links, often starting with
search engines or popular web pages like
Yahoo.com and continue navigating using their lists
of topics or other links.

The automated searches used plain keyword
matching or other simple techniques which returned
too many low quality results or were very easy to
manipulate. For example, some search engines used
only the font size of the text to determine the
importance of the search result. Hence, advertisers
exploited this weakness by creating extra-large
redundant text messages so that their web page
would always appear in the front of search result. For
example to gain attention of possible computer
buyers, they would insert every possible word
connected to computers in a large font like "Dell",
"Vaio", "Acer", etc to their web page. In this case if a
person searches for Sony Vaio laptops, for instance,
he will see the advertiser's web site in the front of the
search result instead of Sony Vaio's official web site
or other more prominent shopping web sites. Some
advertisers would simply pay money to the search
engines, so that their web sites could appear on the
top of search results.

The human maintained lists, on the other hand, have
an advantage of efficiently listing the popular topics
but this approach is expensive to build and maintain,
slow and difficult to improve and in many cases it is
not objective, as a person has to decide which topics
to include in the list. These human maintained lists
are also not able to scale with the growth of the web,
as a person is limited in his/her ability to look to the
enormous amount of documents.

GOOGLE: SCALING WITH THE WEB

Ms. Rubina Khan

w
w

w
.i

gn
it

e
d

.i
n

3

 International Journal of Information Technology and Management
Vol. VI, Issue No. II, May-2014, ISSN 2249-4510

Creating a search engine which scales even to today’s
web presents many challenges. Fast crawling
technology is needed to gather the web documents
and keep them up to date. Storage space must be
used efficiently to store indices and, optionally, the
documents themselves. The indexing system must
process hundreds of gigabytes of data efficiently.
Queries must be handled quickly, at a rate of hundreds
to thousands per second.

These tasks are becoming increasingly difficult as the
Web grows. However, hardware performance and cost
have improved dramatically to partially offset the
difficulty. There are, however, several notable
exceptions to this progress such as disk seek time and
operating system robustness. In designing Google, we
have considered both the rate of growth of the Web
and technological changes. Google is designed to
scale well to extremely large data sets. It makes
efficient use of storage space to store the index. Its
data structures are optimized for fast and efficient
access (see section 4.2). Further, we expect that the
cost to index and store text or HTML will eventually
decline relative to the amount that will be available.
This will result in favorable scaling properties for
centralized systems like Google.

WEB CRAWLER WORKING

Web crawlers are an essential component to search
engines; running a web crawler is a challenging task.
There are tricky performance and reliability issues and
even more importantly, there are social issues.
Crawling is the most fragile application since it involves
interacting with hundreds of thousands of web servers
and various name servers, which are all beyond the
control of the system. Web crawling speed is governed
not only by the speed of one’s own Internet
connection, but also by the speed of the sites that are
to be crawled. Especially if one is a crawling site from
multiple servers, the total crawling time can be
significantly reduced, if many downloads are done in
parallel.

Despite the numerous applications for Web crawlers,
at the core they are all fundamentally the same.
Following is the process by which Web crawlers work:

1. Download the Web page.

2. Parse through the downloaded page and
retrieve all the links.

3. For each link retrieved, repeat the process.

The Web crawler can be used for crawling through a
whole site on the Inter-/Intranet. You specify a start-
URL and the Crawler follows all links found in that
HTML page. This usually leads to more links, which
will be followed again, and so on. A site can be seen

as a tree-structure, the root is the start-URL; all links in
that root-HTML-page are direct sons of the root.
Subsequent links are then sons of the previous sons.

A single URL Server serves lists of URLs to a number
of crawlers. Web crawler starts by parsing a specified
web page, noting any hypertext links on that page that
point to other web pages. They then parse those
pages for new links, and so on, recursively.
Webcrawler software doesn't actually move around to
different computers on the Internet, as viruses or
intelligent agents do. Each crawler keeps roughly 300
connections open at once. This is necessary to
retrieve web pages at a fast enough pace. A crawler
resides on a single machine. The crawler simply
sends HTTP requests for documents to other
machines on the Internet, just as a web browser does
when the user clicks on links. All the crawler really
does is to automate the process of following links.

Web crawling can be regarded as processing items in
a queue. When the crawler visits a web page, it
extracts links to other web pages. So the crawler puts
these URLs at the end of a queue, and continues
crawling to a URL that it removes from the front of the
queue.

GOOGLE'S NEW THOUGHTS

Use of Proximity - Google uses several features to
assure high quality search results. For example it
uses location information for all hits to make
extensive use of proximity in search and it uses some
visual presentation details like font size, as words in a
larger or bolder font tend to be more important and
hence are weighted higher than other words. The
proximity of the search keywords is also important
because for instance when a person searches for
\computer science", he/she is not interested in web
sites about "computers" or "sciences" or any other
person's personal web page containing a sentence
like "Yesterday my computer broke down... I watched
a science _ction movie".

Page Rank - A page with many inlinks can be
considered to be important because many people
point to this page. Counting only inlinks, however,
can be easily manipulated. For example one can
create several small web pages and make a mesh of
links, connecting each to one another. So it is
important to distinguish the characteristic of the
linking web page. For example, a link from
Yahoo.com is not the same as a link from an average
Joe's home page.

As you can see this notion is similar to academic
papers' citations: The more citations a paper has or
the more distinguished authors' papers cite it, the
more importance or quality the paper probably has.

Ms. Rubina Khan

w
w

w
.i

gn
it

e
d

.i
n

4

 An Analysis on the Anatomy of a Large Scale Hypertextual Web Search Engine and a Web Crawler
Application

Google uses this idea of counting inlinks but with the
extension of (a) not counting links from all pages
equally, and by (b) normalizing by the number of links
on a page, to determine the importance of the web
page, which is called PageRank.

Page rank can also be seen as a model of user
behavior. The probability that a random user, given a
random web page as a starting point, and by either
clicking on links or by restarting at another random
web page, reaches that certain web page, de_nes the
"Page rank" of that page. So clearly, if many web sites
point to that web page, the probability that it will get hit
will be higher. Also if the page is pointed from a well-
known/popular web site it will also have a higher
probability to get hit.

Anchor Text - The designers of Google paid special
attention to anchor texts, i.e. the texts of the links. It is
possible to get more accurate results because anchor
text often have better descriptions of the web pages
that they point to. For example, someone would never
make a link to michaeljordon.com with an anchor text
sumo wrestler or Chevrolet. They are more likely to
name the link "air jordan", "#23", or "the greatest
basketball player ever", etc.

In addition, anchor texts provide an opportunity to find
results which cannot be found by plain text search, like
media files, programs, etc. To continue our previous
example, if someone posted a video clip of Michael
Jordan's best dunk shots, the only way we can find this
file is if the link to the file had an anchor text like "MJ's
dunk shots" etc.

This idea of propagating anchor text to the page it
refers to was first implemented in the World Wide Web
Worm. They used it to help search non-text documents
and expand the search coverage. Google extended
their idea to get better quality results.

GOOGLE ARCHITECTURE

In this section, we will give a high level overview of
how the whole system works. Further sections will
discuss the applications and data structures not
mentioned in this section. Most of Google is
implemented in C or C++ for efficiency and can run in
either Solaris or Linux.

In Google, the Web crawling (downloading of Web
pages) is done by several distributed crawlers. There
is a URLserver that sends lists of URLs to be fetched
to the crawlers. The Web pages that are fetched are
then sent to the storeserver. The store- server then
compresses and stores the Web pages into a
repository. Every Web page has an associated ID
number called a doclD which is assigned whenever a
new URL is parsed out of a Web page. The indexing
function is performed by the indexer and the sorter.
The indexer performs a number of functions. It reads
the repository, uncompresses the documents, and
parses them. Each document is converted into a set of

word occurrences called hits. The hits record the word,
position in document, an approximation of font size,
and capitalization. The indexer distributes these hits
into a set of "barrels", creating a partially sorted
forward index. The indexer performs another important
function. It parses out all the links in every Web page
and stores important information about them in an
anchors tile. This file contains enough information to
determine where each link points from and to. and the
text of the link.

The URL resolvcr reads the anchors tile and converts
relative URLs into absolute URLs and in turn into
doclDs. It puts the anchor text into the forward index,
associated with the doclD that the anchor points to. It
also generates a database of links which are pairs of
doc IDs. The links database is used to compute
PageRanks for all the documents.

CRAWLING TECHNIQUES

Focused Crawling - A general purpose Web crawler
gathers as many pages as it can from a particular set
of URL’s. Whereas a focused crawler is designed to
only gather documents on a specific topic, thus
reducing the amount of network traffic and
downloads. The goal of the

focused crawler is to selectively seek out pages that
are relevant to a pre-defined set of topics. The topics
are specified not using keywords, but using
exemplary documents.

Rather than collecting and indexing all accessible
web documents to be able to answer all possible ad-
hoc queries, a focused crawler analyzes its crawl
boundary to find the links that are likely to be most
relevant for the crawl, and avoids irrelevant regions
of the web.

This leads to significant savings in hardware and
network resources, and helps keep the crawl more
up-to-date. The focused crawler has three main
components: a classifier, which makes relevance
judgments on pages crawled to decide on link
expansion, a distiller which determines a measure of
centrality of crawled pages to determine visit
priorities, and a crawler with dynamically
reconfigurable priority controls which is governed by
the classifier and distiller.

The most crucial evaluation of focused crawling is to
measure the harvest ratio, which is rate at which
relevant pages are acquired and irrelevant pages are
effectively filtered off from the crawl. This harvest
ratio must be high, otherwise the focused crawler
would spend a lot of time merely eliminating
irrelevant pages, and it may be better to use an
ordinary crawler instead (Baldi, 2003).

Distributed Crawling - Indexing the web is a
challenge due to its growing and dynamic nature. As
the size of the Web is growing it has become

Ms. Rubina Khan

w
w

w
.i

gn
it

e
d

.i
n

5

 International Journal of Information Technology and Management
Vol. VI, Issue No. II, May-2014, ISSN 2249-4510

imperative to parallelize the crawling process in order
to finish downloading the pages in a reasonable
amount of time. A single crawling process even if
multithreading is used will be insufficient for large –
scale engines that need to fetch large amounts of data
rapidly. When a single centralized crawler is used all
the fetched data passes through a single physical link.
Distributing the crawling activity via multiple processes
can help build a scalable, easily configurable system,
which is fault tolerant system. Splitting the load
decreases hardware requirements and at the same
time increases the overall download speed and
reliability. Each task is performed in a fully distributed
fashion, that is, no central coordinator exists (Baldi,
2003).

CONCLUSION

Google is designed to be a scalable search engine.
The primary goal is to provide high quality search
results over a rapidly growing World Wide Web.
Google employs a number of techniques to improve
search quality including page rank, anchor text, and
proximity information. Furthermore, Google is a
complete architecture for gathering web pages,
indexing them, and performing search queries over
them.

A large-scale web search engine is a complex system
and much remains to be done. Our immediate goals
are to improve search efficiency and to scale to
approximately 100 million web pages. Some simple
improvements to efficiency include query caching,
smart disk allocation, and subindices. Another area
which requires much research is updates. We must
have smart algorithms to decide what old web pages
should be recrawled and what new ones should be
crawled. Work toward this goal has been done in [Cho
98]. One promising area of research is using proxy
caches to build search databases, since they are
demand driven. We are planning to add simple
features supported by commercial search engines like
boolean operators, negation, and stemming. However,
other features are just starting to be explored such as
relevance feedback and clustering (Google currently
supports a simple hostname based clustering). We
also plan to support user context (like the user’s
location), and result summarization. We are also
working to extend the use of link structure and link
text. Simple experiments indicate PageRank can be
personalized by increasing the weight of a user’s
home page or bookmarks. As for link text, we are
experimenting with using text surrounding links in
addition to the link text itself. A Web search engine is a
very rich environment for research ideas.

REFERENCES

 Brian Pinkerton, Finding What People Want:
Experiences with the WebCrawler. The Second

International WWW Conference Chicago, USA,
October 17-20, 1994.

 Casanova, M. A., Tucherman, L., "The nested
context model for hyperdocuments," Proc. of
Hypertext’91, pp. 193-201.

 Chakrabarti, Soumen. Mining the Web:
Analysis of Hypertext and Semi Structured Data, 2003

 Franklin, Curt. How Internet Search Engines
Work, 2002.

 Grossan, B. “Search Engines: What they are,
how they work, and practical suggestions for getting
the most out of them,” February1997.

 Huck, G., Fankhauser, P., Aberer, K.,
Neuhold, E., “Jedi: Extracting and synthesizing
information from the Web,” Proc. 3rd IFCIS
International Conference on Cooperative Information
Systems (CoopIS'98), New York City, August 1998,
pp. 32-43.

 Junghoo Cho, Hector Garcia-Molina,
Lawrence Page. Efficient Crawling Through URL
Ordering. Seventh International Web Conference
(WWW 98). Brisbane, Australia, April 14-18, 1998.

 Luis Gravano, Hector Garcia-Molina, and A.
Tomasic. The Effectiveness of GlOSS for the Text-
Database Discovery Problem. Proc. of the 1994 ACM
SIGMOD International Conference On Management
Of Data, 1994.

 Mauldin, Michael L. Lycos Design Choices in
an Internet Search Service, IEEE Expert Interview
http://www.computer.org/pubs/expert/1997/trends/x10
08/mauldin.htm

 Oliver A. McBryan. GENVL and WWWW:
Tools for Taming the Web. First International
Conference on the World Wide Web. CERN, Geneva
(Switzerland), May 25-26-27 1994.

 Schwartz, M., Delisle, N., "Contexts – A
partitioning concept for hypertext," ACM Transactions
on Office Information Systems, 5(2), April 1987, pp.
168-186.

 Trigg, R. H., “Hypermedia as integration:
Recollections, reflections and exhortations,” Keynote
Address in Hypertext’96 Conference. Xerox Palo Alto
Research Center.

