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Abstract – Cache memories are used in modern, medium and high-speed CPUs to hold temporarily those 
portions of the contents of main memory which are {believed to be) currently in use. Since instructions 
and data in cache memories can usually be referenced in 10 to 25 percent of the time required to access 
main memory, cache memories permit the executing rate of the machine to be substantially increased. In 
order to function effectively, cache memories must be carefully designed and implemented. In this paper, 
we explain the various aspects of cache memories and discuss in some detail the design features and 
trade-offs. 

---------------------------♦----------------------------- 

INTRODUCTION  

A large number of original, trace-driven simulation 
results are presented. Consideration is given to 
practical implementation questions as well as to more 
abstract design issues. Specific aspects of cache 
memories that are investigated include: the cache 
fetch algorithm (demand versus prefetch), the 
placement and replacement algorithms, line size, 
store-through versus copy-back updating of main 
memory, cold-start versus warm-start miss ratios, 
multi-cache consistency, the effect of input/output 
through the cache, the behavior of split data/instruction 
caches, and cache size. Our discussion includes other 
aspects of memory system architecture, including 
translation look aside buffers. Throughout the paper, 
we use as examples the implementation of the cache 
in the Amdahl 470V/6 and 470V/7, the IBM 3081, 
3033, and 370/168, and the DEC VAX 11/780. Cache 
memories are small, high-speed buffer memories used 
in modern computer systems to hold temporarily those 
portions of the contents of main memory which are 
(believed to be) currently in use. Information located in 
cache memory may be accessed in much less time 
than that located in main memory (for reasons 
discussed throughout this paper}. Thus, a central 
processing unit (CPU) with a cache memory needs to 
spend far less time waiting for instructions and 
operands to be fetched and/or stored. For example, in 
typical large, high-speed computers (e.g., Amdahl 
470V/ 7, IBM 3033), main memory can be accessed in 
300 to 600 nanoseconds; information can be obtained 
from a cache, on the other hand, in 50 to 100 
nanoseconds. Since the performance of such 
machines is already limited in instruction execution 
rate by cache memory access time, the absence of 
any cache memory at all would produce a very 
substantial decrease in execution speed. Virtually all 

modern large computer systems have cache 
memories; for example, the Amdahl 470, the IBM 
3081 [IBM82, REIL82, GUST82], 3033, 370/168, 
360/195, the Univac 1100/80, and the Honeywell 66/ 
80. Also, many medium and small size machines 
have cache memories; for example, the DEC VAX 
11/780, 11/750 [ARMS81], and PDP-11/70 [SIRE76, 
SNOW78], and the Apollo, which uses a Motorola 
68000 microprocessor. We believe that within two to 
four years, circuit speed and density will progress 
sufficiently to permit cache memories in one chip 
microcomputers. (On-chip addressable memory is 
planned for the Texas Instruments 99000 [LAFF81, 
ELEC81].) Even microcomputers could benefit 
substantially from an on-chip cache, since on-chip 
access times are much smaller than off-chip access 
times. Thus, the material presented in this paper 
should be relevant to almost the full range of 
computer architecture implementations. The success 
of cache memories has been explained by reference 
to the "property of locality" [DENN72].  

The property of locality has two aspects, temporal 
and spatial. Over short periods of time, a program 
distributes its memory references non-uniformly over 
its address space, and which portions of the address 
space are favored remain largely the same for long 
periods of time. This first property, called temporal 
locality, or locality by time, means that the information 
which will be in use in the near future is likely to be in 
use already. This type of behavior can be expected 
from program loops in which both data and 
instructions are reused. The second property, locality 
by space, means that portions of the address space 
which are in use generally consist of a fairly small 
number of individually contiguous segments of that 
address space. Locality by space, then, means that 
the loci of reference of the program in the near future 
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are likely to be near the current loci of reference. This 
type of behavior can be expected from common 
knowledge of programs: related data items (variables, 
arrays) are usually stored together, and instructions 
are mostly executed sequentially. Since the cache 
memory buffers segments of information that have 
been recently used, the property of locality implies that 
needed information is also likely to be found in the 
cache. Optimizing the design of a cache memory 
generally has four aspects: (1) Maximizing the 
probability of finding a memory reference's target in 
the cache (the hit ratio), (2) minimizing the time to 
access information that is indeed in the cache {access 
time), (3) minimizing the delay due to a miss. 

When the processor needs to read from or write to a 
location in main memory, it first checks whether a copy 
of that data is in the cache. If so, the processor 
immediately reads from or writes to the cache, which is 
much faster than reading from or writing to main 
memory. 

Most modern desktop and server CPUs have at least 
three independent caches: an instruction cache to 
speed up executable instruction fetch, a data cache to 
speed up data fetch and store, and a translation look 
aside buffer (TLB) used to speed up virtual-to-physical 
address translation for both executable instructions 
and data. The data cache is usually organized as a 
hierarchy of more cache levels. It may be noted here 
that TLB cache is a part of the memory management 
unit (MMU) and not directly related to the CPU caches. 

CACHE ENTRIES 

Data is transferred between memory and cache in 
blocks of fixed size, called cache lines. When a cache 
line is copied from memory into the cache, a cache 
entry is created. The cache entry will include the 
copied data as well as the requested memory location 
(now called a tag). 

When the processor needs to read or write a location 
in main memory, it first checks for a corresponding 
entry in the cache. The cache checks for the contents 
of the requested memory location in any cache lines 
that might contain that address. If the processor finds 
that the memory location is in the cache, a cache hit 
has occurred. However, if the processor does not find 
the memory location in the cache, a cache miss has 
occurred. In the case of a cache hit, the processor 
immediately reads or writes the data in the cache line. 
For a cache miss, the cache allocates a new entry and 
copies in data from main memory, then the request is 
fulfilled from the contents of the cache. 

CACHE PERFORMANCE 

The proportion of accesses that result in a cache hit is 
known as the hit rate, and can be a measure of the 
effectiveness of the cache for a given program or 
algorithm. 

Read misses delay execution because of requiring 
data to be transferred from memory, which is much 
slower than reading from the cache. Write misses may 
occur without such penalty, since the processor can 
continue execution while data is copied to main 
memory in the background. 

REPLACEMENT POLICIES 

In order to make room for the new entry on a cache 
miss, the cache may have to evict one of the existing 
entries. The heuristic that it uses to choose the entry to 
evict is called the replacement policy. The fundamental 
problem with any replacement policy is that it must 
predict which existing cache entry is least likely to be 
used in the future. Predicting the future is difficult, so 
there is no perfect way to choose among the variety of 
replacement policies available. 

One popular replacement policy, least-recently 
used (LRU), replaces the least recently accessed 
entry. 

Marking some memory ranges as non-cacheable 
can improve performance, by avoiding caching of 
memory regions that are rarely re-accessed. This 
avoids the overhead of loading something into the 
cache without having any reuse. Cache entries may 
also be disabled or locked depending on the context. 

WRITE POLICIES 

If data is written to the cache, at some point it must 
also be written to main memory; the timing of this 
write is known as the write policy. In a write-
through cache, every write to the cache causes a 
write to main memory. Alternatively, in a write-
back or copy-back cache, writes are not immediately 
mirrored to the main memory, and the cache instead 
tracks which locations have been written over, 
marking them as dirty. The data in these locations is 
written back to the main memory only when that data 
is evicted from the cache. For this reason, a read 
miss in a write-back cache may sometimes require 
two memory accesses to service: one to first write 
the dirty location to main memory, and then another 
to read the new location from memory. Also, a write 
to a main memory location that is not yet mapped in 
a write-back cache may evict an already dirty 
location, thereby freeing that cache space for the 
new memory location. 

There are intermediate policies as well. The cache 
may be write-through, but the writes may be held in a 
store data queue temporarily, usually so that multiple 
stores can be processed together (which can reduce 
bus turnarounds and improve bus utilization). 

Cached data from the main memory may be 
changed by other entities (e.g. peripherals using 
direct memory access (DMA) or another core in 
a multi-core processor), in which case the copy in 
the cache may become out-of-date or stale. 

https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Least-recently_used
https://en.wikipedia.org/wiki/Least-recently_used
https://en.wikipedia.org/wiki/Write-through
https://en.wikipedia.org/wiki/Write-through
https://en.wikipedia.org/wiki/Write-back
https://en.wikipedia.org/wiki/Write-back
https://en.wikipedia.org/wiki/Dirty_bit
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/Multi-core_processor
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Alternatively, when a CPU in a multiprocessor system 
updates data in the cache, copies of data in caches 
associated with other CPUs will become stale. 
Communication protocols between the cache 
managers that keep the data consistent are known 
as cache coherence protocols. 

CPU STALLS 

The time taken to fetch one cache line from memory 
(read latency) matters because the CPU will run out of 
things to do while waiting for the cache line. When a 
CPU reaches this state, it is called a stall. As CPUs 
become faster compared to main memory, stalls due 
to cache misses displace more potential computation; 
modern CPUs can execute hundreds of instructions in 
the time taken to fetch a single cache line from main 
memory. 

Various techniques have been employed to keep the 
CPU busy during this time, including out-of-order 
execution in which the CPU (Pentium Pro and later 
Intel designs, for example) attempts to execute 
independent instructions after the instruction that is 
waiting for the cache miss data. Another technology, 
used by many processors, is simultaneous 
multithreading(SMT), or in Intel's terminology hyper-
threading (HT), which allows an alternate thread to use 
the CPU core while the first thread waits for required 
CPU resources to become available. 

CACHE ENTRY STRUCTURE 

Cache row entries usually have the following structure: 

tag data block flag bits 

 

The data block (cache line) contains the actual data 
fetched from the main memory. The tag contains (part 
of) the address of the actual data fetched from the 
main memory. The flag bits are discussed below. 

The "size" of the cache is the amount of main memory 
data it can hold. This size can be calculated as the 
number of bytes stored in each data block times the 
number of blocks stored in the cache. (The tag, flag 
and error correction code bits are not included in the 
size although they do affect the physical area of a 
cache.) 

An effective memory address is split (MSB to LSB) into 
the tag, the index and the block offset.  

tag index block offset 

The index describes which cache row (which cache 
line) that the data has been put in. The index length 

is  bits for r cache rows. 

The block offset specifies the desired data within the 
stored data block within the cache row. Typically the 
effective address is in bytes, so the block offset length 

is  bits, where b is the number of bytes per 
data block. The tag contains the most significant bits of 
the address, which are checked against the current 
row (the row has been retrieved by index) to see if it is 
the one we need or another, irrelevant memory 
location that happened to have the same index bits 
as the one we want. The tag length in bits 
is address_length - index_length - 
block_offset_length. 

Some authors refer to the block offset as simply the 
"offset" or the "displacement". 

EXAMPLE 

The original Pentium 4 processor had a four-way set 
associative L1 data cache of 8 KB in size, with 64-
byte cache blocks. Hence, there are 8 KB / 64 = 128 
cache blocks. The number of sets is equal to the 
number of cache blocks divided by the number of 
ways of associativity, what leads to 128 / 4 = 32 sets, 
and hence 2

5
 = 32 different indices. There are 2

6
 = 64 

possible offsets. Since the CPU address is 32 bits 
wide, this implies 21 + 5 + 6 = 32 and hence 21 bits 
for the tag field. 

The original Pentium 4 processor also had an eight-
way set associative L2 integrated cache 256 KB in 
size, with 128-byte cache blocks. This implies 
17 + 8 + 7 = 32 and hence 17 bits for the tag field.  

FLAG BITS 

An instruction cache requires only one flag bit per 
cache row entry: a valid bit. The valid bit indicates 
whether or not a cache block has been loaded with 
valid data. 

On power-up, the hardware sets all the valid bits in all 
the caches to "invalid". Some systems also set a valid 
bit to "invalid" at other times, such as when multi-
master bus snooping hardware in the cache of one 
processor hears an address broadcast from some 
other processor, and realizes that certain data blocks 
in the local cache are now stale and should be 
marked invalid. 

A data cache typically requires two flag bits per cache 
line – a valid bit and a dirty bit. Having a dirty bit set 
indicates that the associated cache line has been 
changed since it was read from main memory 
("dirty"), meaning that the processor has written data 

https://en.wikipedia.org/wiki/Multiprocessor
https://en.wikipedia.org/wiki/Cache_coherence
https://en.wikipedia.org/wiki/Out-of-order_execution
https://en.wikipedia.org/wiki/Out-of-order_execution
https://en.wikipedia.org/wiki/Simultaneous_multithreading
https://en.wikipedia.org/wiki/Simultaneous_multithreading
https://en.wikipedia.org/wiki/Hyper-threading
https://en.wikipedia.org/wiki/Hyper-threading
https://en.wikipedia.org/wiki/CPU_cache#Flag_bits
https://en.wikipedia.org/wiki/ECC_memory#cache
https://en.wikipedia.org/wiki/Most_significant_bit
https://en.wikipedia.org/wiki/Least_significant_bit
https://en.wikipedia.org/wiki/Pentium_4
https://en.wikipedia.org/wiki/Kibibyte
https://en.wikipedia.org/wiki/Bus_snooping
https://en.wikipedia.org/wiki/Dirty_bit
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to that line and the new value has not propagated all 
the way to main memory. 

DIRECT-MAPPED CACHE 

In this cache organization, each location in main 
memory can go in only one entry in the cache. 
Therefore, a direct-mapped cache can also be called a 
"one-way set associative" cache. It does not have a 
replacement policy as such, since there is no choice of 
which cache entry's contents to evict. This means that 
if two locations map to the same entry, they may 
continually knock each other out. Although simpler, a 
direct-mapped cache needs to be much larger than an 
associative one to give comparable performance, and 
it is more unpredictable. Let x be block number in 
cache, y be block number of memory, and n be 
number of blocks in cache, then mapping is done with 
the help of the equation x = y mod n. 

TWO-WAY SET ASSOCIATIVE CACHE 

If each location in main memory can be cached in 
either of two locations in the cache, one logical 
question is: which one of the two? The simplest and 
most commonly used scheme, shown in the right-hand 
diagram above, is to use the least significant bits of the 
memory location's index as the index for the cache 
memory, and to have two entries for each index. One 
benefit of this scheme is that the tags stored in the 
cache do not have to include that part of the main 
memory address which is implied by the cache 
memory's index. Since the cache tags have fewer bits, 
they require fewer transistors, take less space on the 
processor circuit board or on the microprocessor chip, 
and can be read and compared faster. Also LRUI’s 
especially simple since only one bit needs to be stored 
for each pair. 

SPECULATIVE EXECUTION 

One of the advantages of a direct mapped cache is 
that it allows simple and fast speculation. Once the 
address has been computed, the one cache index 
which might have a copy of that location in memory is 
known. That cache entry can be read, and the 
processor can continue to work with that data before it 
finishes checking that the tag actually matches the 
requested address. 

The idea of having the processor use the cached data 
before the tag match completes can be applied to 
associative caches as well. A subset of the tag, called 
a hint, can be used to pick just one of the possible 
cache entries mapping to the requested address. The 
entry selected by the hint can then be used in parallel 
with checking the full tag. 

TWO-WAY SKEWED ASSOCIATIVE CACHE 

Other schemes have been suggested, such as 
the skewed cache where the index for May 0 is direct, 
as above, but the index for May 1 is formed with 

a hash function. A good hash function has the property 
that addresses which conflict with the direct mapping 
tend not to conflict when mapped with the hash 
function, and so it is less likely that a program will 
suffer from an unexpectedly large number of conflict 
misses due to a pathological access pattern. The 
downside is extra latency from computing the hash 
function. Additionally, when it comes time to load a 
new line and evict an old line, it may be difficult to 
determine which existing line was least recently used, 
because the new line conflicts with data at different 
indexes in each way; LRU tracking for non-skewed 
caches is usually done on a per-set basis. 
Nevertheless, skewed-associative caches have major 
advantages over conventional set-associative ones. 

PSEUDO-ASSOCIATIVE CACHE 

A true set-associative cache tests all the possible 
ways simultaneously, using something like a content 
addressable memory. A pseudo-associative cache 
tests each possible way one at a time. A hash-
rehash cache and a column-associative cache are 
examples of a pseudo-associative cache. 

In the common case of finding a hit in the first way 
tested, a pseudo-associative cache is as fast as a 
direct-mapped cache, but it has a much lower 
conflict miss rate than a direct-mapped cache, closer 
to the miss rate of a fully associative cache. 
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