

REVIEW ARTICLE

Study of Political Representations:
Diplomatic Missions of Early Indian to

Britain

Journal of
Advances and

Scholarly
Researches in

Allied
Education

Vol. 3, Issue 6,
April-2012,
ISSN 2230-

7540

International Journal of
Information Technology

and Management

Vol. VI, Issue No. I,
February-2014, ISSN 2249-

4510

AN

INTERNATIONALLY

INDEXED PEER

REVIEWED &

REFEREED JOURNAL

A CRITICAL STUDY ON CACHE MEMORY
MANAGEMENT AND ITS VARIOUS ASPECTS

www.ignited.in

Rishi Mathur1 Dr. D. D. Aggarawal2

w
w

w
.i

gn
it

e
d

.i
n

1

 International Journal of Information Technology and Management
Vol. VI, Issue No. I, February-2014, ISSN 2249-4510

A Critical Study on Cache Memory Management
and Its Various Aspects

Rishi Mathur1 Dr. D. D. Aggarawal2

1
Research Scholar, Bundelkhand University, Jhansi (U.P)

Abstract – Cache memories are used in modern, medium and high-speed CPUs to hold temporarily those
portions of the contents of main memory which are {believed to be) currently in use. Since instructions
and data in cache memories can usually be referenced in 10 to 25 percent of the time required to access
main memory, cache memories permit the executing rate of the machine to be substantially increased. In
order to function effectively, cache memories must be carefully designed and implemented. In this paper,
we explain the various aspects of cache memories and discuss in some detail the design features and
trade-offs.

---------------------------♦-----------------------------

INTRODUCTION

A large number of original, trace-driven simulation
results are presented. Consideration is given to
practical implementation questions as well as to more
abstract design issues. Specific aspects of cache
memories that are investigated include: the cache
fetch algorithm (demand versus prefetch), the
placement and replacement algorithms, line size,
store-through versus copy-back updating of main
memory, cold-start versus warm-start miss ratios,
multi-cache consistency, the effect of input/output
through the cache, the behavior of split data/instruction
caches, and cache size. Our discussion includes other
aspects of memory system architecture, including
translation look aside buffers. Throughout the paper,
we use as examples the implementation of the cache
in the Amdahl 470V/6 and 470V/7, the IBM 3081,
3033, and 370/168, and the DEC VAX 11/780. Cache
memories are small, high-speed buffer memories used
in modern computer systems to hold temporarily those
portions of the contents of main memory which are
(believed to be) currently in use. Information located in
cache memory may be accessed in much less time
than that located in main memory (for reasons
discussed throughout this paper}. Thus, a central
processing unit (CPU) with a cache memory needs to
spend far less time waiting for instructions and
operands to be fetched and/or stored. For example, in
typical large, high-speed computers (e.g., Amdahl
470V/ 7, IBM 3033), main memory can be accessed in
300 to 600 nanoseconds; information can be obtained
from a cache, on the other hand, in 50 to 100
nanoseconds. Since the performance of such
machines is already limited in instruction execution
rate by cache memory access time, the absence of
any cache memory at all would produce a very
substantial decrease in execution speed. Virtually all

modern large computer systems have cache
memories; for example, the Amdahl 470, the IBM
3081 [IBM82, REIL82, GUST82], 3033, 370/168,
360/195, the Univac 1100/80, and the Honeywell 66/
80. Also, many medium and small size machines
have cache memories; for example, the DEC VAX
11/780, 11/750 [ARMS81], and PDP-11/70 [SIRE76,
SNOW78], and the Apollo, which uses a Motorola
68000 microprocessor. We believe that within two to
four years, circuit speed and density will progress
sufficiently to permit cache memories in one chip
microcomputers. (On-chip addressable memory is
planned for the Texas Instruments 99000 [LAFF81,
ELEC81].) Even microcomputers could benefit
substantially from an on-chip cache, since on-chip
access times are much smaller than off-chip access
times. Thus, the material presented in this paper
should be relevant to almost the full range of
computer architecture implementations. The success
of cache memories has been explained by reference
to the "property of locality" [DENN72].

The property of locality has two aspects, temporal
and spatial. Over short periods of time, a program
distributes its memory references non-uniformly over
its address space, and which portions of the address
space are favored remain largely the same for long
periods of time. This first property, called temporal
locality, or locality by time, means that the information
which will be in use in the near future is likely to be in
use already. This type of behavior can be expected
from program loops in which both data and
instructions are reused. The second property, locality
by space, means that portions of the address space
which are in use generally consist of a fairly small
number of individually contiguous segments of that
address space. Locality by space, then, means that
the loci of reference of the program in the near future

Rishi Mathur1 Dr. D. D. Aggarawal2

w
w

w
.i

gn
it

e
d

.i
n

2

 A Critical Study on Cache Memory Management and Its Various Aspects

are likely to be near the current loci of reference. This
type of behavior can be expected from common
knowledge of programs: related data items (variables,
arrays) are usually stored together, and instructions
are mostly executed sequentially. Since the cache
memory buffers segments of information that have
been recently used, the property of locality implies that
needed information is also likely to be found in the
cache. Optimizing the design of a cache memory
generally has four aspects: (1) Maximizing the
probability of finding a memory reference's target in
the cache (the hit ratio), (2) minimizing the time to
access information that is indeed in the cache {access
time), (3) minimizing the delay due to a miss.

When the processor needs to read from or write to a
location in main memory, it first checks whether a copy
of that data is in the cache. If so, the processor
immediately reads from or writes to the cache, which is
much faster than reading from or writing to main
memory.

Most modern desktop and server CPUs have at least
three independent caches: an instruction cache to
speed up executable instruction fetch, a data cache to
speed up data fetch and store, and a translation look
aside buffer (TLB) used to speed up virtual-to-physical
address translation for both executable instructions
and data. The data cache is usually organized as a
hierarchy of more cache levels. It may be noted here
that TLB cache is a part of the memory management
unit (MMU) and not directly related to the CPU caches.

CACHE ENTRIES

Data is transferred between memory and cache in
blocks of fixed size, called cache lines. When a cache
line is copied from memory into the cache, a cache
entry is created. The cache entry will include the
copied data as well as the requested memory location
(now called a tag).

When the processor needs to read or write a location
in main memory, it first checks for a corresponding
entry in the cache. The cache checks for the contents
of the requested memory location in any cache lines
that might contain that address. If the processor finds
that the memory location is in the cache, a cache hit
has occurred. However, if the processor does not find
the memory location in the cache, a cache miss has
occurred. In the case of a cache hit, the processor
immediately reads or writes the data in the cache line.
For a cache miss, the cache allocates a new entry and
copies in data from main memory, then the request is
fulfilled from the contents of the cache.

CACHE PERFORMANCE

The proportion of accesses that result in a cache hit is
known as the hit rate, and can be a measure of the
effectiveness of the cache for a given program or
algorithm.

Read misses delay execution because of requiring
data to be transferred from memory, which is much
slower than reading from the cache. Write misses may
occur without such penalty, since the processor can
continue execution while data is copied to main
memory in the background.

REPLACEMENT POLICIES

In order to make room for the new entry on a cache
miss, the cache may have to evict one of the existing
entries. The heuristic that it uses to choose the entry to
evict is called the replacement policy. The fundamental
problem with any replacement policy is that it must
predict which existing cache entry is least likely to be
used in the future. Predicting the future is difficult, so
there is no perfect way to choose among the variety of
replacement policies available.

One popular replacement policy, least-recently
used (LRU), replaces the least recently accessed
entry.

Marking some memory ranges as non-cacheable
can improve performance, by avoiding caching of
memory regions that are rarely re-accessed. This
avoids the overhead of loading something into the
cache without having any reuse. Cache entries may
also be disabled or locked depending on the context.

WRITE POLICIES

If data is written to the cache, at some point it must
also be written to main memory; the timing of this
write is known as the write policy. In a write-
through cache, every write to the cache causes a
write to main memory. Alternatively, in a write-
back or copy-back cache, writes are not immediately
mirrored to the main memory, and the cache instead
tracks which locations have been written over,
marking them as dirty. The data in these locations is
written back to the main memory only when that data
is evicted from the cache. For this reason, a read
miss in a write-back cache may sometimes require
two memory accesses to service: one to first write
the dirty location to main memory, and then another
to read the new location from memory. Also, a write
to a main memory location that is not yet mapped in
a write-back cache may evict an already dirty
location, thereby freeing that cache space for the
new memory location.

There are intermediate policies as well. The cache
may be write-through, but the writes may be held in a
store data queue temporarily, usually so that multiple
stores can be processed together (which can reduce
bus turnarounds and improve bus utilization).

Cached data from the main memory may be
changed by other entities (e.g. peripherals using
direct memory access (DMA) or another core in
a multi-core processor), in which case the copy in
the cache may become out-of-date or stale.

https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Least-recently_used
https://en.wikipedia.org/wiki/Least-recently_used
https://en.wikipedia.org/wiki/Write-through
https://en.wikipedia.org/wiki/Write-through
https://en.wikipedia.org/wiki/Write-back
https://en.wikipedia.org/wiki/Write-back
https://en.wikipedia.org/wiki/Dirty_bit
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/Multi-core_processor

Rishi Mathur1 Dr. D. D. Aggarawal2

w
w

w
.i

gn
it

e
d

.i
n

3

 International Journal of Information Technology and Management
Vol. VI, Issue No. I, February-2014, ISSN 2249-4510

Alternatively, when a CPU in a multiprocessor system
updates data in the cache, copies of data in caches
associated with other CPUs will become stale.
Communication protocols between the cache
managers that keep the data consistent are known
as cache coherence protocols.

CPU STALLS

The time taken to fetch one cache line from memory
(read latency) matters because the CPU will run out of
things to do while waiting for the cache line. When a
CPU reaches this state, it is called a stall. As CPUs
become faster compared to main memory, stalls due
to cache misses displace more potential computation;
modern CPUs can execute hundreds of instructions in
the time taken to fetch a single cache line from main
memory.

Various techniques have been employed to keep the
CPU busy during this time, including out-of-order
execution in which the CPU (Pentium Pro and later
Intel designs, for example) attempts to execute
independent instructions after the instruction that is
waiting for the cache miss data. Another technology,
used by many processors, is simultaneous
multithreading(SMT), or in Intel's terminology hyper-
threading (HT), which allows an alternate thread to use
the CPU core while the first thread waits for required
CPU resources to become available.

CACHE ENTRY STRUCTURE

Cache row entries usually have the following structure:

tag data block flag bits

The data block (cache line) contains the actual data
fetched from the main memory. The tag contains (part
of) the address of the actual data fetched from the
main memory. The flag bits are discussed below.

The "size" of the cache is the amount of main memory
data it can hold. This size can be calculated as the
number of bytes stored in each data block times the
number of blocks stored in the cache. (The tag, flag
and error correction code bits are not included in the
size although they do affect the physical area of a
cache.)

An effective memory address is split (MSB to LSB) into
the tag, the index and the block offset.

tag index block offset

The index describes which cache row (which cache
line) that the data has been put in. The index length

is bits for r cache rows.

The block offset specifies the desired data within the
stored data block within the cache row. Typically the
effective address is in bytes, so the block offset length

is bits, where b is the number of bytes per
data block. The tag contains the most significant bits of
the address, which are checked against the current
row (the row has been retrieved by index) to see if it is
the one we need or another, irrelevant memory
location that happened to have the same index bits
as the one we want. The tag length in bits
is address_length - index_length -
block_offset_length.

Some authors refer to the block offset as simply the
"offset" or the "displacement".

EXAMPLE

The original Pentium 4 processor had a four-way set
associative L1 data cache of 8 KB in size, with 64-
byte cache blocks. Hence, there are 8 KB / 64 = 128
cache blocks. The number of sets is equal to the
number of cache blocks divided by the number of
ways of associativity, what leads to 128 / 4 = 32 sets,
and hence 2

5
 = 32 different indices. There are 2

6
 = 64

possible offsets. Since the CPU address is 32 bits
wide, this implies 21 + 5 + 6 = 32 and hence 21 bits
for the tag field.

The original Pentium 4 processor also had an eight-
way set associative L2 integrated cache 256 KB in
size, with 128-byte cache blocks. This implies
17 + 8 + 7 = 32 and hence 17 bits for the tag field.

FLAG BITS

An instruction cache requires only one flag bit per
cache row entry: a valid bit. The valid bit indicates
whether or not a cache block has been loaded with
valid data.

On power-up, the hardware sets all the valid bits in all
the caches to "invalid". Some systems also set a valid
bit to "invalid" at other times, such as when multi-
master bus snooping hardware in the cache of one
processor hears an address broadcast from some
other processor, and realizes that certain data blocks
in the local cache are now stale and should be
marked invalid.

A data cache typically requires two flag bits per cache
line – a valid bit and a dirty bit. Having a dirty bit set
indicates that the associated cache line has been
changed since it was read from main memory
("dirty"), meaning that the processor has written data

https://en.wikipedia.org/wiki/Multiprocessor
https://en.wikipedia.org/wiki/Cache_coherence
https://en.wikipedia.org/wiki/Out-of-order_execution
https://en.wikipedia.org/wiki/Out-of-order_execution
https://en.wikipedia.org/wiki/Simultaneous_multithreading
https://en.wikipedia.org/wiki/Simultaneous_multithreading
https://en.wikipedia.org/wiki/Hyper-threading
https://en.wikipedia.org/wiki/Hyper-threading
https://en.wikipedia.org/wiki/CPU_cache#Flag_bits
https://en.wikipedia.org/wiki/ECC_memory#cache
https://en.wikipedia.org/wiki/Most_significant_bit
https://en.wikipedia.org/wiki/Least_significant_bit
https://en.wikipedia.org/wiki/Pentium_4
https://en.wikipedia.org/wiki/Kibibyte
https://en.wikipedia.org/wiki/Bus_snooping
https://en.wikipedia.org/wiki/Dirty_bit

Rishi Mathur1 Dr. D. D. Aggarawal2

w
w

w
.i

gn
it

e
d

.i
n

4

 A Critical Study on Cache Memory Management and Its Various Aspects

to that line and the new value has not propagated all
the way to main memory.

DIRECT-MAPPED CACHE

In this cache organization, each location in main
memory can go in only one entry in the cache.
Therefore, a direct-mapped cache can also be called a
"one-way set associative" cache. It does not have a
replacement policy as such, since there is no choice of
which cache entry's contents to evict. This means that
if two locations map to the same entry, they may
continually knock each other out. Although simpler, a
direct-mapped cache needs to be much larger than an
associative one to give comparable performance, and
it is more unpredictable. Let x be block number in
cache, y be block number of memory, and n be
number of blocks in cache, then mapping is done with
the help of the equation x = y mod n.

TWO-WAY SET ASSOCIATIVE CACHE

If each location in main memory can be cached in
either of two locations in the cache, one logical
question is: which one of the two? The simplest and
most commonly used scheme, shown in the right-hand
diagram above, is to use the least significant bits of the
memory location's index as the index for the cache
memory, and to have two entries for each index. One
benefit of this scheme is that the tags stored in the
cache do not have to include that part of the main
memory address which is implied by the cache
memory's index. Since the cache tags have fewer bits,
they require fewer transistors, take less space on the
processor circuit board or on the microprocessor chip,
and can be read and compared faster. Also LRUI’s
especially simple since only one bit needs to be stored
for each pair.

SPECULATIVE EXECUTION

One of the advantages of a direct mapped cache is
that it allows simple and fast speculation. Once the
address has been computed, the one cache index
which might have a copy of that location in memory is
known. That cache entry can be read, and the
processor can continue to work with that data before it
finishes checking that the tag actually matches the
requested address.

The idea of having the processor use the cached data
before the tag match completes can be applied to
associative caches as well. A subset of the tag, called
a hint, can be used to pick just one of the possible
cache entries mapping to the requested address. The
entry selected by the hint can then be used in parallel
with checking the full tag.

TWO-WAY SKEWED ASSOCIATIVE CACHE

Other schemes have been suggested, such as
the skewed cache where the index for May 0 is direct,
as above, but the index for May 1 is formed with

a hash function. A good hash function has the property
that addresses which conflict with the direct mapping
tend not to conflict when mapped with the hash
function, and so it is less likely that a program will
suffer from an unexpectedly large number of conflict
misses due to a pathological access pattern. The
downside is extra latency from computing the hash
function. Additionally, when it comes time to load a
new line and evict an old line, it may be difficult to
determine which existing line was least recently used,
because the new line conflicts with data at different
indexes in each way; LRU tracking for non-skewed
caches is usually done on a per-set basis.
Nevertheless, skewed-associative caches have major
advantages over conventional set-associative ones.

PSEUDO-ASSOCIATIVE CACHE

A true set-associative cache tests all the possible
ways simultaneously, using something like a content
addressable memory. A pseudo-associative cache
tests each possible way one at a time. A hash-
rehash cache and a column-associative cache are
examples of a pseudo-associative cache.

In the common case of finding a hit in the first way
tested, a pseudo-associative cache is as fast as a
direct-mapped cache, but it has a much lower
conflict miss rate than a direct-mapped cache, closer
to the miss rate of a fully associative cache.

REFERENCES

 Nathan N. Sadler and Daniel J.
Sorin. "Choosing an Error Protection
Scheme for a Microprocessor’s L1 Data
Cache". 2006. p. 4.

 John L. Hennessy, David A. Patterson.
"Computer Architecture: A Quantitative
Approach". 2011. ISBN 0-12-383872-
X, ISBN 978-0-12-383872-8. page B-9.

 David A. Patterson, John L. Hennessy.
"Computer organization and design: the
hardware/software interface". 2009. ISBN 0-
12-374493-8, ISBN 978-0-12-374493-
7 "Chapter 5: Large and Fast: Exploiting the
Memory Hierarchy". p. 484.

 Gene Cooperman. "Cache Basics". 2003.

 Ben Dugan. "Concerning Caches". 2002.

 Harvey G. Cragon. "Memory systems and
pipelined processors". 1996. ISBN 0-86720-
474-5,ISBN 978-0-86720-474-2. "Chapter
4.1: Cache Addressing, Virtual or Real" p.
209

https://en.wikipedia.org/wiki/Cache_algorithms
https://en.wikipedia.org/wiki/Speculative_execution
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Cache_algorithms
https://en.wikipedia.org/wiki/Content_addressable_memory
https://en.wikipedia.org/wiki/Content_addressable_memory
http://people.ee.duke.edu/~sorin/papers/iccd06_perc.pdf
http://people.ee.duke.edu/~sorin/papers/iccd06_perc.pdf
http://people.ee.duke.edu/~sorin/papers/iccd06_perc.pdf
https://en.wikipedia.org/wiki/Special:BookSources/012383872X
https://en.wikipedia.org/wiki/Special:BookSources/012383872X
https://en.wikipedia.org/wiki/Special:BookSources/9780123838728
https://en.wikipedia.org/wiki/Special:BookSources/0123744938
https://en.wikipedia.org/wiki/Special:BookSources/0123744938
https://en.wikipedia.org/wiki/Special:BookSources/9780123744937
https://en.wikipedia.org/wiki/Special:BookSources/9780123744937
https://en.wikipedia.org/wiki/Special:BookSources/0867204745
https://en.wikipedia.org/wiki/Special:BookSources/0867204745
https://en.wikipedia.org/wiki/Special:BookSources/9780867204742

Rishi Mathur1 Dr. D. D. Aggarawal2

w
w

w
.i

gn
it

e
d

.i
n

5

 International Journal of Information Technology and Management
Vol. VI, Issue No. I, February-2014, ISSN 2249-4510

 "Cache design" (PDF). ucsd.edu. 2010-12-02.

p. 10–15. Retrieved 2014-02-24.

 IEEE Xplore - Phased set associative cache
design for reduced power consumption.
Ieeexplore.ieee.org (2009-08-11). Retrieved
on 2013-07-30.

 André Seznec. "A Case for Two-Way Skewed-
Associative
Caches".doi:10.1145/173682.165152.
Retrieved 2007-12-13.

http://cseweb.ucsd.edu/classes/fa10/cse240a/pdf/08/CSE240A-MBT-L15-Cache.ppt.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5234663
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5234663
http://dl.acm.org/citation.cfm?doid=173682.165152
http://dl.acm.org/citation.cfm?doid=173682.165152
http://dl.acm.org/citation.cfm?doid=173682.165152
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%2F173682.165152

