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Abstract – Central to many statistical inference problems is the computation of some quantities defined 
over variables that can be fruitfully modeled in terms of graphs. Examples of such quantities include 
marginal distributions over graphical models and empirical average of observations over sensor 
networks. For practical purposes, distributed message-passing algorithms are well suited to deal with 
such problems. In particular, the computation is broken down into pieces and distributed among different 
nodes. Following some local computations, the intermediate results are shared among neighboring nodes 
via the so called messages.  

The process is repeated until the desired quantity is obtained. These distributed inference algorithms have 
two primary aspects: statistical properties, in which characterize how mathematically sound an algorithm 
is, and computational complexity that describes the efficiency of a particular algorithm. In this thesis, we 
propose low-complexity (efficient), message-passing algorithms as alternatives to some well-known 
inference problems while providing rigorous mathematical analysis of their performances. These 
problems include the computation of the marginal distribution via belief propagation for discrete as well 
as continuous random variables, and the computation of the average of distributed observations in a 
noisy sensor network via gossip-type algorithms. 

---------------------------♦----------------------------- 

INTRODUCTION  

Many practical systems are affected by random 
variations such as observational error, communication 
noise, model uncertainty, and so on. Examples of such 
systems can be found in different fields including 
telecommunications, signal and image processing, 
computer vision, machine learning, finance, 
bioinformatics, among others. The purpose of 
statistical inference is to draw conclusions based on 
data arising from such systems. To characterize their 
behavior, the stochastic systems are first modeled, 
which means the relationship between random 
variables are formalized (typically via a set of 
parameters). Then, based on some realizations of the 
data, an estimate of the parameters that best describe 
the system are determined. Inference problems have 
two fundamental aspects: statistical properties that 
characterize the behavior of an algorithm (such as 
consistency, rate of convergence, etc.) as well as 
computational complexity that describes the efficiency 
of a particular algorithm.  

In this dissertation, our primary focus will be on the 
latter. We will provide efficient, low-complexity 
solutions to some algorithms with wide range of 
applications, while analyzing their statistical behavior. 
Due to their nature, distributed computation is well 
suited for problems on graphs. The existence of the 
required infrastructure for the centralized computation 
is not necessarily guaranteed in the sensor network 

application. Also, as will become clear in the following 
chapter, a form of the divide and conquer algorithm 
on graphs can significantly increases the efficiency of 
the marginalization algorithm. The general idea 
behind distributed computation is to break down the 
calculation and distribute the pieces among different 
nodes. Then following some local computations, 
every node shares its information with other nodes by 
passing the so called messages to its neighbors 
along the edges of the graph. The received 
messages constitute the intermediate results and 
could be of the form of a d-dimensional vector, a real-
valued function, or a noise-corrupted signal. Every 
node, uses the received messages in order to update 
an estimate of the desired quantity. Of interested to 
us are the statistical properties of these estimates, as 
well as the efficiency of the local computations. 

But first we need to formally introduce two popular 
mathematical models for distributed computations, 
graphical models and sensor networks. 

GRAPHICAL MODELS 

By bringing together graph theory and probability 
theory, graphical models provide a general and 
flexible framework for describing statistical 
interactions among random variables. A broad range 
of fields—among them statistical signal processing, 
computer vision, coding theory, bioinformatics, 
natural language processing—involve problems with 
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large number of random variables that can be fruitfully 
formulated in terms of graphs. A few of such examples 
include, positioning and tracking problems that can be 
modeled by chains, low-density parity-check codes 
that can be described by factor graphs, some image 
processing as well as vision problems that can be 
formulated by two dimensional grids, and text 
processing that can be modeled by Bayesiannetworks. 

The statistical dependencies among random variables 
are encoded by the structure of the graph. This is 
accomplished by first mapping the random variables to 
the nodes of the graph and then factorizing the joint 
probability distribution over local functions defined on 
the graph. There are two common families of graphical 
models, directed models also known as Bayesian 
networks and undirected models also known as 
Markov random fields. See Figure for an illustration of 
these two models. Bayesian networks are defined on 
directed graphs that is every edge consists of an 
ordered pair of nodes. It can be shown that if the 
directed graphical model is acyclic (i.e. does not 
include any directed cycles), the joint probability 
density becomes equal to the product of a collection of 
local conditional probability densities. In contrast to 
Bayesian networks, Markov random fields are defined 
on undirected graphs in which each edge is an 
unordered pair of nodes. As we will see in the next 
chapter, probability densities over such graphs also 
have local factorization, in particular over positive 
functions defined on the fully connected sub-graphs. 
Even though these two models are closely related, 
they make different assertions of conditional 
independence between random variables. Therefore, 
depending on the application one might be a better 
option than the other. For instance, a Markov random 
field could a better choice for problems that involve 
random variables with no clear causal relationships. 

BACKGROUND 

In this chapter, we will review some of the 
mathematical concepts that will be employed 
throughout this thesis. These will include graphical 
models, the belief propagation algorithm, stochastic 
approximation, and gossip algorithms. We begin by 
reviewing the basic concepts of undirected graphical 
models as well as the belief propagation algorithm.  

Undirected Graphical Models - An undirected graphical 
model, also known as a Markov random field, defines 
a family of joint probability distributions over the 
random vector X. These probability distributions are 
assumed to be absolutely continuous with respect to a 
given measure μ, typically the counting measure for 
the case of discrete random variables or the Lebesgue 
measure for continuous random variables. The 
structure of the graph describes the statistical 
dependencies among the different random variables—
in particular via the notion of graph separation. For a 

set A, define the sub-vector , 
similarly defined for sets B and C. We say that: 

“the random vector XA is independent of XC given 
XB” 

 

Figure: The notion of graph separation. Set B 
separates sets A and C. More precisely, every path 

from a node in set A to a node in set C goes 
through a node in set B. Accordingly, the set of 
random variables {X1,X2,X3} is independent of 

the set {X5,X6,X7,X8} given X4. 

if and only if set B separates sets A and C. More 
specifically, every path from a node in set A to a 
node in set C goes through the set B. See Figure for 
an illustration of the graph separation notion. Every 
graph G, induces a set of such conditional 
independence statements also known as Markov 
properties. Moreover, it should be noted that such 
Markov properties must hold for all members of the 
family of the probability distributions associated with 
G.  

Therefore, the family of acceptable probability 
distributions is constrained by the set of all Markov 
properties and thus have a particular form of 
factorization. In order to make this statement precise, 
we need to define the notion of cliques. 

Pairwise Markov Random Fields - Many applications 
involve pairwise interactions among nodes. In those 
instances, since cliques consist of the set of all 
vertices V together with the set of all edges E, the 
general factorization takes the special form 

 

BELIEF PROPAGATION ALGORITHM 

Belief propagation is an iterative algorithm consisting 
of a set of local message-passing rounds, for 
computing either exact or approximate marginal 
distributions defined on a graph. As discussed in the 
previous section, if approached naively, computing 
marginal distributions is intractable. However, 
exploiting the particular form of the factorization 
induced by the graph, BP provides a fast and 
efficient method for dealing with this problem. In this 
section, we will provide an overview of the BP 
algorithm over the sum-product semi-ring.  
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In order to formally introduce the message-passing 
updates, we first need to define the notion of the factor 
graph. A factor graph is a graphical representation of 
factorizations.  

In precise terms, it is a bipartite graph 

consisting of variable nodes 
indexed  by V1 := {1, 2, . . . , n} and factor nodes V2 := 

{I|I  C}. Moreover, an edge connects the variable 

node i to the factor I (i.e. (i, I)  ε’) if and only if xi 

belongs to the local function I (·).  

STOCHASTIC BELIEF PROPAGATION 

In this chapter, we focus on the problem of 
implementing the belief propagation message-passing 
for high-dimensional discrete random variables. In 
many applications of BP, the messages themselves 
are high-dimensional in nature, either due to discrete 
random variables with a very large number of possible 
realizations d (which will be referred to as the number 
of states), due to factor nodes with high degree, or due 
to continuous random variables that are discretized. 
Examples of such problems include disparity 
estimation in computer vision, tracking problems in 
sensor networks, and error-control decoding. For such 
problems, it may be expensive to compute and/or 
store the messages, and as a consequence, BP may 
run slowly, and be limited to small-scale instances. 
Motivated by this challenge, researchers have studied 
a variety of techniques to reduce the complexity of BP 
in different applications. At the core of the BP 
message-passing is a matrix-vector multiplication, with 
complexity scaling quadratically in the number of 
states d. Certain graphical models have special 
structures that can be exploited so as to reduce this 
complexity. For instance, in applications to the 
decoding of low-density parity-check codes in channel 
coding, the complexity of message-passing, if 
performed naively, would scale exponentially in the 
factor degrees. However, a clever use of the fast 
Fourier transform over GF(2r) reduces this complexity 
to linear in the factor degrees. Other problems arising 
in computer vision involve pairwise factors with a 
circulant structure for which the fast Fourier transform 
can also reduce complexity. Similarly, computation can 
be accelerated by exploiting symmetry in factors, or 
additional factorization properties of the distribution. 

APPLICATIONS IN IMAGE PROCESSING AND 
COMPUTER VISION 

In our next set of experiments, we study the SBP on 
some larger scale graphs and more challenging 
problem instances, with applications to image 
processing and computer vision. Message-passing 
algorithms can be used for image denoising, in 
particular, on a two dimensional square grid where 
every node corresponds to a pixel. Running the BP 

algorithm on the graph, one can obtain 
(approximations to) the most likely value of every pixel 
based on the noisy observations. In this experiment, 
we consider a 200 × 200 image with d = 256 gray-
scale levels, as showin in Figure (a). We then 
contaminate every pixel with an independent Gaussian 
random variable with standard deviation _ = 0.1, as 
shown in Figure (b). Enforcing the potts model with 
smoothness parameter  = 0.05 as the edge potential, 
we run BP and SBP for the total of t = 5 and t = 100 
iterations, respectively, to obtain the refined images 
(see panels (c) and (d), respectively, in Figure). Figure 
illustrates the mean-squared error versus the running 
time for both BP and SBP denoising. 

As one can observe, despite smaller jumps in the 
error reduction, the per-iteration running time of SBP 
is substantially lower than BP. Overall, SBP has done 
a marginally better job than BP in a substantially 
shorter amount of time in this instance. Note that the 
purpose of this experiment is not to analyze the 
potential of SBP (or for that matter BP) in image 
denoising, but to rather observe their relative 
performances and computational complexities. 

 

DESCRIPTION OF THE SOSMP ALGORITHM 

In this section, we turn to the description of the 
SOSMP algorithm. The SOSMP algorithm involves a 
combination of the orthogonal series expansion 
techniques and stochastic methods previously 
described. Any particular version of the algorithm is 

specified by the choice of basic functions  
and two positive integers: the number of coefficients r 
that are maintained, and the number of samples k 
used in the stochastic update. Prior to running the 

algorithm, for each directed edge  we 
pre-compute the inner products   
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When is a symmetric and positive semi definite 
kernel function, these inner products have an explicit 
and simple representation in terms of its Mercer Eigen 
decomposition. In the general setting, these r inner 
products can be computed via standard numerical 
integration techniques. Note that this is a fixed (one-
time) cost prior to running the algorithm. 

Moving beyond simulated problems, we conclude by 
showing the SOSMP algorithm in application to a 
larger scale problem that arises in computer vision—
namely, that of optical flow estimation. In this problem, 
the input data are two successive frames of a video 
sequence. We model each frame as a collection of 

pixels arrayed over  grid, and measured 
intensity values at each pixel location of the form 

. Our goal is to estimate a 2-
dimensional motion vector xu = (xu,1, xu,2) that 
captures the local motion at each pixel 

 of the image 
sequence. 

EFFICIENT DISTRIBUTED AVERAGING 

Given the communication randomness, any algorithm 
is necessarily stochastic, and the corresponding 
sequence of random variables can be analyzed in 
various ways. The simplest question to ask is whether 
the algorithm is consistent—that is, does it compute an 
approximate average or achieve consensus in an 
asymptotic sense for a given fixed graph? A more 
refined analysis seeks to provide information about 
this convergence rate. In this chapter, we do so by 
posing the following question: for a given algorithm, 
how does number of iterations required to compute the 
average to within _-accuracy scale as a function of the 
graph topology and number of nodes n? For obvious 
reasons, we refer to this as the network scaling of an 
algorithm, and we are interested in finding an 
algorithm that has optimal scaling law. 

The issue of network scaling has been studied by a 
number of authors in the noiseless setting, in which 
the communication between nodes is perfect. Of 
particular relevance here is the work of Benezit et al., 
who in the case of perfect communication provided a 
scheme that has essentially optimal message scaling 
law for random geometric graphs. 

In order to demonstrate the effectiveness of the 
proposed algorithm, we conducted a set of 
simulations. More specifically, we apply the proposed 
algorithm to four nearest-neighbor square grids of 
different sizes. We initially generate the data 

 as random N(1, 1) variables 

and fix them throughout the simulation. So for each 
run of the algorithm the initial data is fixed. In 

implementing the algorithm, we adopt 
2
 = 1 as the 

channel noise variance, and we set the tolerance 

parameter  = 0.1, leading to the step size 

.  

We estimated the mean-squared error, defined in 
equation, by taking the average over 50 sample paths. 
As discussed in every outer phase update requires 

 time steps. 

CONCLUSION 

In this paper, we have developed and analyzed a new 
and low-complexity alternative to the BP message-
passing. The SBP algorithm has per iteration 
computational complexity that scales linearly in the 
state dimension d, as opposed to the quadratic 
dependence of BP, and a communication cost of 
log2 d bits per edge and iteration, as opposed to d−1 
real numbers for standard BP message updates. 
Stochastic belief propagation is also easy to 
implement, requiring only random number generation 
and the usual distributed updates of a message- 
passing algorithm. Our main contribution was to 
prove a number of theoretical guarantees for the 
SBP message updates, including convergence for 
any tree-structured problem, as well as for general 
graphs for which the ordinary BP message update 
satisfies a suitable contraction condition. In addition, 
we provided non-asymptotic upper bounds on the 
SBP error, both in expectation and in high 
probability. 

Our work leaves open a number of interesting 
questions. First, although we have focused 
exclusively on models with pairwise interactions, it 
should be possible to develop forms of SOSMP for 
higher-order factor graphs. Second, the bulk of our 
analysis was performed under a type of contractivity 
condition, as has been used in past work on 
convergence of the standard BP updates. However, 
we suspect that this condition might be somewhat 
relaxed, and doing so would demonstrate 
applicability of the SOSMP algorithm to a larger 
class of graphical models. 

There are various issues left open in this work. First, 
while the AWGN model is more realistic than 
noiseless communication, many channels in wireless 
networks may be more complicated, for instance 
involving fading, interference and other types of 
memory. In principle, our algorithm could be applied 
to such channels and networks, but its behavior and 
associated convergence rates remain to be 
analyzed. In a separate direction, it is also worth 
noting that gossip-type algorithms can be used to 
solve other problems, such as distributed 
optimization problems and kernel density estimation. 
Complexity reduction and studying the issue of 
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optimal network scaling for such problems is also of 
interest. 
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