

REVIEW ARTICLE

Study of Political Representations:
Diplomatic Missions of Early Indian to

Britain

Journal of
Advances and

Scholarly
Researches in

Allied
Education

Vol. 3, Issue 6,
April-2012,
ISSN 2230-

7540

International Journal of
Information Technology

and Management

Vol. VI, Issue No. II,
May-2014, ISSN 2249-4510

AN

INTERNATIONALLY

INDEXED PEER

REVIEWED &

REFEREED JOURNAL

IMPORTANCE OF SOFTWARE MAINTENANCE

www.ignited.in

Anshul Kapil1 Dr. S. B. L. Tripathy2

w
w

w
.i

gn
it

e
d

.i
n

1

 International Journal of Information Technology and Management
Vol. VI, Issue No. II, May-2014, ISSN 2249-4510

Importance of Software Maintenance

Anshul Kapil1 Dr. S. B. L. Tripathy2

1
Dept. Of Computer Science, Research Scholar of OPJS University, Churu, Rajasthan -India

2
Assistant Professor, G.L. Bihani S.D. College, Ganga Nagar, Rajasthan

Abstract – In the late 1970s, a famous and widely cited survey study by Lentz and Swanson, exposed the
very high fraction of life-cycle costs that were being expended on maintenance. An integral part of
software is the maintenance one, which requires an accurate maintenance plan to be prepared during the
software development. It should specify how users will request modifications or report problems. The
budget should include resource and cost estimates. A new decision should be addressed for the
developing of every new system feature and its quality objectives. The software maintenance, which can
last for 5–6 years or even decades after the development process, calls for an effective plan which can
address the scope of software maintenance, the tailoring of the post-delivery/deployment process, the
designation of who will provide maintenance, and an estimate of the life-cycle costs.

---------------------------♦-----------------------------

INTRODUCTION

Software management is the art and science of
planning and leading software projects. It is a sub-
discipline of project management in which software
projects are planned, implemented, monitored and
controlled. Software management has the capacity to
help plan, organize, and manage resource pools and
develop resource estimates. Depending on the
sophistication of the software, it can manage
estimation and planning, scheduling, cost control and
budget management, resource allocation,
collaboration software, communication, decision-
making, quality management and documentation or
administration systems. Today, numerous PC-based
software management packages exist such as Frame
bench-podio etc. and they are finding their way into
almost every type of business.

There are several common activities which apply to
most software management processes.

 Versioning.

Same developers use a version control system such
as subversion to keep track of the changes to source
code, especially when there are multiple developers
working on the same software.

 Building.

In this process, the software is build or compiled. If
any kind of error is detected in this stage then that
error is removed from the source code.

 Testing.

Usually considered part of "the build", there are often
automated tests for software and sometimes also
manual tests to verify that the software was
built/installed/packaged/configured correctly.
Sometimes, it is possible to skip the tests.
Sometimes, it is hard to run them or interpret the
results. So, testing is done after the compilation of the
software.

 Packaging.

Once software has been built then next step is to
share it with others. To this end, the software is
packed up into some kind of "archive format".

 Configuring.

Source code is often written to be able to function in a
variety of environments, such as on different
operating systems or even on different kinds of
hardware. Some software may also function
differently depending on what other software is
installed on the system already. Lastly, users may
wish to customize how the software behaves or is
installed. So in this process, the software is
configured in such a way that it can run in any kind of
environment or any specified environment.

 Installing. After software has been built and
configured, the next procedure is to install the
software into specific locations on the target system,

http://en.wikipedia.org/wiki/Whole-life_cost
http://en.wikipedia.org/wiki/Software_development_effort_estimation
http://en.wikipedia.org/wiki/Schedule_(workplace)
http://en.wikipedia.org/wiki/Cost_control
http://en.wikipedia.org/wiki/Budget_management
http://en.wikipedia.org/wiki/Resource_allocation
http://en.wikipedia.org/wiki/Collaboration_software
http://en.wikipedia.org/wiki/Communication
http://en.wikipedia.org/wiki/Decision-making_software
http://en.wikipedia.org/wiki/Decision-making_software
http://en.wikipedia.org/wiki/Documentation
http://en.wikipedia.org/wiki/Framebench
http://en.wikipedia.org/wiki/Framebench

Anshul Kapil1 Dr. S. B. L. Tripathy2

w
w

w
.i

gn
it

e
d

.i
n

2

 Importance of Software Maintenance

register it with the operating system as a service, or
something similar.

 Distributing. After the packaging of software,
the next procedure is to publish it on the internet, a cd-
rom or similar medium, or by submitting our changes
to a centralized or decentralized version control
system.

REAL LIFE SOFTWARE MANAGEMENT

A rather generic flowchart which incorporates many
common processes is:

In this chart, each and every step could probably be
skipped or replaced by a "no-op", and some arrows
are followed more commonly than others.

For example, most software developers tend to follow
an iterative process when writing code. They will
"switch into development mode", change some source,
rebuild and test the change, change some more
source, rebuild and test, check in the changes, rebuild
and test, create a distribution package, "switch to
production mode", get the distribution, build and test it,
do some configuration, rebuild, then install.

SOFTWARE MAINTENANCE:

Software maintenance in software engineering is the
modification of a software product after delivery to
correct faults, to improve performance or other
attributes. A common perception of maintenance is
that it merely involves fixing defects. However, one
study indicated that the majority, over 80%, of the
maintenance effort is used for non-corrective
actions. This perception is perpetuated by users
submitting problem reports that in reality are
functionality enhancements to the system. More recent
studies put the bug-fixing proportion closer to 21%.

Software maintenance and evolution of systems was
first addressed by Meir M. Lehman in 1969. Over a
period of twenty years, his research led to the
formulation of Lehman's Laws. Key findings of his
research include that maintenance is really
evolutionary development and that maintenance

decisions are aided by understanding what happens to
systems and software over time. Lehman
demonstrated that systems continue to evolve over
time. As they evolve, they grow more complex unless
some action such as code refactoring is taken to
reduce the complexity.

The key software maintenance issues are both
managerial and technical. Key management issues
are: alignment with customer priorities, staffing, which
organization does maintenance, estimating costs. Key
technical issues are: limited understanding, impact
analysis, testing, and maintainability measurement.

Software maintenance is a very broad activity that
includes error correction, enhancements of
capabilities, deletion of obsolete capabilities, and
optimization. Because change is inevitable,
mechanisms must be developed for evaluation,
controlling and making modifications.

So any work done to change the software after it is in
operation is considered to be maintenance work. The
purpose is to preserve the value of software over the
time. The value can be enhanced by expanding the
customer base, meeting additional requirements,
becoming easier to use, more efficient and
employing newer technology. Maintenance may
span for 20 years, whereas development may be 1-2
years.

REVIEW OF LITERATURE:

Bateman classified maintenance programs as
reactive, preventive and predictive maintenance.
Preventive and predictive maintenance represent
two proactive strategies by which companies can
avoid code breakdowns. In reactive maintenance,
the software is allowed to run until failure and then
the failed software is repaired or replaced [Paz and
Leigh, 2004]. Though under reactive maintenance,
temporary repairs may be done in order to return
software to operational condition and permanent
repairs made later time (Gallimore and Penlesky,
2008). Proactive maintenance is a strategy for
maintenance whereby breakdowns are avoided
through activities that monitor code and undertake
minor updations to restore code to operational
condition. These activities, including preventive and
predictive maintenance, reduce the probability of
unexpected software failures. Preventive
maintenance is often referred to as use-based
maintenance where maintenance activities are
undertaken after a specified period of time (Herbaty,
1990; Gits, 1992). Weil (2008) added another
approach in his description of the maintenance
spectrum by including Total Productive Maintenance
(TPM). TPM is an aggressive maintenance approach
that seeks to improve software performance while
continuing to avoid software failures applied to all the
project as the ultimate objective of any factory is to
have a highly efficient integrated system and not
brilliant individual module [Oechsner et al. 2002].

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Software_evolution
http://en.wikipedia.org/wiki/Meir_M._Lehman
http://en.wikipedia.org/wiki/Software_evolution#Lehman.27s_Laws_of_Software_Evolution
http://en.wikipedia.org/wiki/Code_refactoring
http://en.wikipedia.org/wiki/Change_impact_analysis
http://en.wikipedia.org/wiki/Change_impact_analysis

Anshul Kapil1 Dr. S. B. L. Tripathy2

w
w

w
.i

gn
it

e
d

.i
n

3

 International Journal of Information Technology and Management
Vol. VI, Issue No. II, May-2014, ISSN 2249-4510

McKone et al. [2001] described positive impacts of
TPM practices. Further, software performance can be
measured with four different basic parameters i.e. cost,
quality, delivery, and flexibility that are extended in
some studies including several measures [Skinner ;
Hayes et al. 2008; Schroeder 2003; Miller and Roth,
2004; Ward et al. 2005].

OBJECTIVES OF THE STUDY:

The objectives of present study are :

1. To study the implementation process of
software.

2. To study the maintenance process of software.

3. To study the efficiency of processes involved
in software management.

RESEARCH METHODOLOGY:

The survey showed that around 75% of the
maintenance effort was on the first two types and error
correction consumed about 21%. Many subsequent
studies suggest a similar magnitude of the problem.
Studies show that contribution of end user is crucial
during the new requirement data gathering and
analysis. And this is the main cause of any problem
during software evolution and maintenance. So
software maintenance is important because it
consumes a large part of the overall lifecycle costs and
also the inability to change software quickly and
reliably means that business opportunities are lost.

Not only are error-prone modules troublesome, but
many other factors can degrade performance too. For
example, very complex “spaghetti code” is quite
difficult to maintain safely. A very common situation
which often degrades performance is lack of suitable
maintenance tools, such as defect tracking software,
change management software, and test library
software. Below describe some of the factors and the
range of impact on software maintenance.

Importance of Software Maintenance

In the late 1970s, a famous and widely cited survey
study by Lentz and Swanson, exposed the very high
fraction of life-cycle costs that were being expended
on maintenance. They categorized maintenance
activities into four classes:

 Adaptive – modifying the system to cope with
changes in the software environment.

 Perfective – implementing new or changed
user requirements which concern functional
enhancements to the software.

 Corrective – diagnosing and fixing errors,
possibly ones found by users.

 Preventive – increasing software
maintainability or reliability to prevent
problems in the future.

System Maintenance

System Maintenance of an application system
commences when the system is accepted and put into
production. On-going monitoring and maintenance of
the system have to be performed during the System
Maintenance Cycle (SMC) so as to ensure the
performance and functionality of the system match
with the business needs of the users. Detailed
information is provided in the Guidelines on System
Maintenance Cycle.

 System Maintenance Cycle of an application system
is depicted below:-

Maintenance Planning:

A maintenance plan should be prepared in the
Project Closure Stage and submitted to Project
Steering Committee (PSC) for approval. It details

 the role assignments of SMC organization;

 the procedures of maintenance activities;

 the required deliverables for SMC; and

 the maintenance resources and facilities
delegated for SMC.

Review of the plan should be conducted as need
arises and properly approved.

http://en.wikipedia.org/wiki/Whole-life_cost

Anshul Kapil1 Dr. S. B. L. Tripathy2

w
w

w
.i

gn
it

e
d

.i
n

4

 Importance of Software Maintenance

BIBLIOGRAPHY:

 Ahmed Awad E. Ahmed, and Issa Traore , “A
Study on Software Management Processes”,
Proceedings of 6th IEEE Information
Assurance Workshop, pp. 452- 453, 2005.

 Abdalla M. Elramsisi, Fareed Zaghlool,
Tharwat O. S. Ahanafy and Abdou Saad El
Din Moustafa, “Neural Approach Modeling
Scheme for the Software Management”, New
York Science Journal, Vol. 3, No. 12, pp. 142-
149, 2010.

 Akila, M., Suresh Kumar, S., “Improving
Feature Extraction in Software Management”,
Proceedings of the International Conference
on Sustainable Energy and Intelligent Systems
(SEISCON 2011), pp. 891–898, 2011.

 Ali, H., Wahyudi, Salami, M., “Essential
Components of Software Management”,
Proceedings of 5th International Colloquium
on Signal Processing & Its Applications, pp.
198–203, 2009.

 Amir Abolfazl Suratgar, Mohammad Bagher
Tavakoli, and Abbas Hoseinabadi, “Modified
Levenberg-Marquardt Method for Neural
Networks Training”, World Academy of
Science, Engineering and Technology 6, pp.
46-48, 2005.

 Anil Jain, Karthik Nandakumar, Arun Ross,
“Study on Software Management”, Pattern
Recognition, Vol. 38 , pp. 2270 – 2285, 2005.

 Aqlan. A. M, W. F. Abd El-Wahed and M.A.
Abd El-Wahed, “A Study on Maintaince
processes of Software ”, 6th International
Conference on Informatics and Systems,
Faculty of Computers & Information-Cairo
University, Cairo-Egypt, pp. 110-117, 2008.

 Azevedo, G.L.F., Cavalcanti, G.D.C., Carvalho
Filho, E.C.B., “Analysis of Software
Management Processes”.

 Boehm, B.W. The high cost of software. Proc
Symp on High Cost of Software, Monterey,
Calif., pp. 27--40.

 Boehm, B.W., Brown, J.R., and Lipow, M.
Quantitative evaluation of software quality.
Proc. 2nd Int. Conf. on Software Eng., pp.
592-605.

 Gildersleeve, T.R. Data Processing Project
Management. Van Nostrand Reinhold, New
York.

 Implications of Using Modular Programming.
Guide No. 1, Hoskyns Syst. Res., J. Hoskyns
and Co., London.

 Khan, Z. How to tackle the systems
maintenance dilemma. Canadian Data Syst. ,
30-32.

 Kosy, D.W. Air Force command and control
information processing : Trends in software
technology. U.S. Air Force Proj. RAND, RAND
Corp., Santa Monica, Calif., p. 70.

