

REVIEW ARTICLE

Study of Political Representations:
Diplomatic Missions of Early Indian to

Britain

Journal of
Advances and

Scholarly
Researches in

Allied
Education

Vol. 3, Issue 6,
April-2012,
ISSN 2230-

7540

International Journal of
Information Technology

and Management

Vol. VIII, Issue No. XI,
February-2015, ISSN 2249-

4510

AN

INTERNATIONALLY

INDEXED PEER

REVIEWED &

REFEREED JOURNAL

PAGE REPLACEMENT USING FIFO AND LRU

www.ignited.in

Radha Saini1 Dr. Professor Vivek Kumar2 Dr. Seema Phogat3

w
w

w
.i

gn
it

e
d

.i
n

1

 International Journal of Information Technology and Management
Vol. VIII, Issue No. XI, February-2015, ISSN 2249-4510

Page Replacement Using FIFO and LRU

Rekha1 Mr. Khaushal2 Dr. Soniya3

Abstract – In this paper, a hybrid page replacement algorithm has been represented that has a better
performance in average than quondam methods. A major attempt in such an algorithm is to substitute
characteristics of some quondam methods engrossed by a new idea. The key concept of proposed
scheme is to combine the two algorithms i.e. FIFO and LRU In brief this paper remonstrate an advanced
version of Least recently used algorithm and FIFO , which is referred as Hybrid LRU and FIFO.

Keywords: FIFO, LRU Algorithm, Page Replacement Algorithm, Paging

---------------------------♦-----------------------------

INTRODUCTION

The most important part of the operating system is
memory management. Main memory is divided into
fixed size units called page frames. Each victimized
page can be either in secondary memory or in main
memory as page frames. The virtual address space [3]
is divided into fix size blocks called pages and this
division is done by operating system. A CPU
generated address is called logical address or virtual
address, whereas memory management unit
generated address is known as physical address.
Before using this logical address, it must be translated
to its corresponding physical address. This address
translation has been done corresponding to every
memory reference, so it is important that it must be
fast. A special hardware unit referred to as Memory
Management Unit (MMU), is used for such
translation. MMU uses address mapping information
which is usually located in page tables, to make the
translation. If the given virtual address is not mapped
to main memory, operating system is trapped by the
MMU. This trap is called as page fault which gives an
opportunity to the operating system to bring the
desired page from secondary memory to main
memory, and then update the page table
correspondingly. In simple words we can say that-
When the processor need to execute a particular
page and main memory does not contain that
page, this situation is known as PAGE FAULT. As
each and every process has its own virtual address
space, the operating system must keep track of all
pages and the location of each page used by each
process. Whenever any page in main memory is
referenced or written to, it is marked accordingly.
When a page fault occurs (known as cache miss), the
operating system eliminates some page to secondary
memory to make space for the incoming page.
Whenever a cache miss occurs, the operating system
applies page replacement algorithm to choose a page

from cache for replacement or eviction to make place
for the referenced page. When the selected page is
modified while it is in cache (also called as dirty), it
must be again written to the RAM also known as write
back. If any page will not modified, no write back will
be need to the RAM, which results less overhead. A
paging algorithm or page replacement algorithm
[4] is needed to manage paging. A paging algorithm
evicts pages from and to the page table when it
becomes full. Many algorithms have been developed
for such a swapping in which the best-case scenario
is to be replaced the page that is not going to be used
for the longest time. Since it is difficult to predict the
future reference, a better way to choose the correct
algorithm is by looking at characteristics of the
processes. It is necessary to influence which page
should be replace. Evicting a page that may be
required in close future can degrade the system
performance; because it imposes a reloading time
overhead.

PREVIOUS WORK

Page Replacement Algorithm

In a computer operating system paging is used for
virtual memory management and page replacement
algorithms are used to decide which memory pages
to page out (swap out, write to disk) when a page of
memory requires to be allocated. Paging encounters
when a page fault occurs and a free page cannot be
used to fulfill that allocation, either because there are
no free pages, or because the number of free pages
is less than some brink. When any page that was
hand-picked for eviction from memory and paged out,
is referenced again it has to be rewrite in memory
and this includes waiting for I/O culmination. There
are a variety of page replacement algorithms. Some
of them are described as follows:-

Radha Saini1 Dr. Professor Vivek Kumar2 Dr. Seema Phogat3

w
w

w
.i

gn
it

e
d

.i
n

2

 A Novel Technique of Data Duplication Detection on Web and Improving Page Rank

First in, first out (FIFO)

The first-in first-out algorithm [2] is the simplest and
oldest algorithm. The idea behind FIFO is to replace a
page that is the oldest page in main memory from all
the pages. „Replace the page which has been resident
from longest period of time.‟ FIFO focuses on the
length of a time a page has been in memory rather
than how much the page is being used. Figure.1
illustrates an example of the FIFO algorithm. Here it is
important to note that since the page table is initially
empty; directly three page faults appear to fill the table
and after that, a page fault occurs only when any
required page is not present in the table at that time
and so on.

 Figure.1: FIFO representation for 3 frames

 Least Recently Used (LRU)

The LRU policy is based on the principle of locality
which states that program and data references within a
process tend to cluster. The LRU page replacement
policy chooses that page for replacement which has
not been used for the longest time. For a long time,
LRU was deliberated to be the most optimum online
policy. LRU while being operative is again, not without
problems. The first drawback among them is the fact
that it is very costly to implement it. In fact, the most
costly method in linked with LRU, which facilitates in
attaining what it is meant to. This can be a factor for
not choosing this algorithm. The second problem with
this approach is the difficulty in implementation. LRU
policy does nearly as well as an optimal policy, but it is
intricate to implement and imposes significant
overhead. The LRU is based on the observation that
pages that have been used a lot in the last few
instructions will probably be utilized a lot again in the
next few. Contrarily, pages that have not been utilized
for ages will probably remain unused for longest period
of time. This idea suggests a realizable algorithm:
when a page fault takes place, evict the page that has
been unused for the longest period of time. There are
a few implementation methods for this algorithm that
attempt to diminish the cost yet keep as much of the
performance as possible. The most costly method is
the linked list method, which utilizes a linked list
enclosing all the pages in memory. At the front is the
most recently used page and at the back of this list is
the least recently used page, which is a very time-

consuming process. LRU's weakness is that its
performance tends to degenerate under many quite
common reference patterns. On the other hand one
important advantage of the LRU algorithm is that it is
agreeable to full statistical analysis.

Proposed work

We are proposing a methodology in which we are
merging two algorithms i.e. FIFO and LRU. By making
this hybrid algo we can achieve better page
replacement by including advantages of two different
algorithms. Output of FIFO will be serve as a input for
LRU.

ALGORITHUM:

 Firstly include pages in secondary memory.

 Now shift pages in primary memory as per
its usage

 For page replacement from primary memory,
replace the page which is sorted as per
combination of its entrance and its usage.

 Finally replace that page from primary
memory.

FUTURE SCOPE

We can achieve more efficient page replacement by
making hybrid of other algorithms. So that we can
increase the efficiency of the system and better page
replacement .we can also reduce the time of page
replacement using by the processor.

CONCLUSION

In this paper we have discussed famous page
replacement policies like FIFO, LRU then
implemented and compared them to evaluate their
efficiency .And combine the two famous algorithms
i.e. FIFO and LRU to present the better page
replacement.

REFERENCES

[1] O ‟Neil, J. E., O ‟Neil, E. P., Weikum, G.,
"An Optimality Proof of the LRU-K Page
Replacement Algorithm", Journal of the
ACM, Vol. 46, No. 1, pp. 92- 112, January
1999.

[2] Ali Khosrozadeh, Sanaz Pashmforoush,
Abolfazl Akbari, Maryam Bagheri, Neda
Beikmahdavi., “Presenting a Novel Page
Replacement Algorithm Based on LRU” ,
Journal of Basic and Applied Scientific
Research , 2(10)10377-10383, 2012.

Radha Saini1 Dr. Professor Vivek Kumar2 Dr. Seema Phogat3

w
w

w
.i

gn
it

e
d

.i
n

3

 International Journal of Information Technology and Management
Vol. VIII, Issue No. XI, February-2015, ISSN 2249-4510

[3] Kim, K., Park, K., "Least Popularity – Per –

Byte Replacement Algorithm for a Proxy
Cache ", IEEE, pp. 780 – 787, 2001.

[4] S.M. Shamsheer Daula, Dr. K.E Sreenivasa
Murthy, G Amjad Khan., “A Throghput
Analysis on page replacement algorithm”,
International Journal of Engineering Research
and Applications (IJERA), ISSN: 2248-9622,
Vol. 2, Issue 2, pp.126-13, Mar-Apr 2012.

[5] Jaafar Alghazo, Adil Akaaboune, and Nazeih
Botros. Sf-lru cache replacement algorithm. In
MTDT, pages 19-24. IEEE Computer Society,
2004

[6] Donghee Lee, Jongmoo Choi, Jong-Hun Kim,
Sam H. Noh, Sang Lyul Min, Yookun Cho, and
Chong-Sang Kim. Lrfu: A spectrum of policies
that subsumes the least recently used and
least frequently used policies. IEEE Trans.
Computers, 50(12):1352-1361, 2001.

[7] Andrew S. Tanenbaum. Modern Operating
Systems. Prentice-Hall, 1992

