

International Journal of Information Technology and Management

Vol. III, Issue No. I, August – 2012, ISSN 2249-4510

Available online at www.ignited.in Page 1
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

“Real – Time Software Components for
Embedded Systems”

Dr. Ahmedi Azra

Research Scholar

Abstract – In this paper we discussed real-time software components for embedded systems. Real-time systems
are computer systems that monitor, respond to, or control an external environment. This environment is
connected to the computer system through sensors, actuators, and other input-output interfaces. It may consist
of physical or biological objects of any form and structure. Often humans are part of the connected external
world, but a wide range of other natural and artificial objects, as well as animals, are also possible.

Keywords: Embedded real-time systems; Component model; Non-functional properties; Separation of concerns

--♦--

INTRODUCTION

The computer system must meet various timing and other
constraints that are imposed on it by the real-time behavior
of the external world to which it is interfaced. Hence, the
name is real time. Another name for many of these
systems is reactive systems, because their primary
purpose is to respond to or react to signals from their
environment. A real-time computer system may be a
component of a larger system in which it is embedded;
reasonably, such a computer component is called an
embedded system.

Applications and examples of real-time systems are
ubiquitous and proliferating, appearing as part of our
commercial, government, military, medical, educational,
and cultural infrastructures. Included are

o vehicle systems for automobiles, subways, aircraft,
railways, and ships

o traffic control for highways, airspace, railway
tracks, and shipping lanes

o process control for power plants, chemical plants,
and consumer products such as soft drinks and
beer

o medical systems for radiation therapy, patient
monitoring, and defibrillation

o military uses such as firing weapons, tracking, and
command and control

o manufacturing systems with robots

o telephone, radio, and satellite communications

o computer games

o multimedia systems that provide text, graphic,
audio, and video interfaces

o household systems for monitoring and controlling
appliances

o building managers that control such entities as
heat, lights, doors, and elevators

Component based development has proven itself to have
significant benefits in the enterprise IT and web-based
environments; complex applications are quickly created
and very few, if any, are created from scratch – they all
leverage a rich set of third-party open-source or
commercial components. Beyond object-oriented language
support, component models address all phases of the
software lifecycle and standardize software abstractions to
the point where – without any ad-hoc conventions or
schedule coordination among the participants – interfaces
defined by one company can be implemented by a second
and used by a third. Moreover, tools that leverage the
additional structure imposed by this standardization
facilitate the development and (re)use of components,

http://www.ignited.in/

International Journal of Information Technology and Management

Vol. III, Issue No. I, August – 2012, ISSN 2249-4510

Available online at www.ignited.in Page 2
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

further accelerating the creation of applications assembled
from components created by third-parties.

RTSC OVERVIEW

The RTSC tools and component model have enjoyed
continuous development since 2000 by a small group of
senior embedded software developers. Since 2004, the
DSP/BIOS 5.x RTOS – created using the RTSC tools –
has shipped along with the RTSC tools to ensure that any
development system that included DSP/BIOS could
consume components (called packages) created by any
other development group. Today, internal groups within
Texas Instruments regularly (re)build, test, and deploy
hundreds of RTSC packages. Many of these packages are
used worldwide by thousands of developers both inside
and outside Texas Instruments.

 DSP/BIOS 5.x – one of the most popular
embedded RTOS's – is deployed as a bundle of
more than 56 packages,

 Codec Engine multi-media middleware runtime
(which requires DSP/BIOS) is an independently
deployed bundle of more than 21 packages,

 a wide variety of video, imaging, speech, and
audio codec’s – developed by both Texas
Instruments and its third parties – are delivered as
a packages, and

 the RTSC toolset itself is delivered as a bundle of
over 125 packages

The fact that developers have been using DSP/BIOS 5.x
without realizing that it is, in fact, a collection of RTSC
components illustrates one of the strengths of the RTSC
model: consumers of RTSC components can easily
integrate them without converting their entire application
into components.

The RTSC tools currently provide basic support for the
entire software development cycle: Install Develop, Debug,
and Deploy.

 Install:

o package selection, compatibility checks, and side-
by-side installation

 Develop:

o side-by-side multi-target build with managed tool
chains for both cross and native compilers

o tool chain-independent package build
specifications

o component configuration and assembly tool

o document generation from component
specifications

 Debug:

o component-specific views of internal data
structures

o component compatibility checking

 Deploy:

o component packaging tools

o on-device real-time logging and diagnostics to
monitor system activity

Among the various solutions proposed to that end, the
adoption of Model-Driven Engineering (MDE) Schmidt
(2006) has fared rather well by measure of interest and
success. Evidence collected in domain-specific initiatives
(cf. e.g., (Bordin and Vardanega, 2007, Panunzio and
Vardanega, 2007 and Bordin et al., 2008)) shows that the
higher level of abstraction in the design process facilitated
by MDE allows addressing non-functional concerns earlier
in the development, thereby enabling proactive analysis,
maturation and consolidation of the software design.
Moreover, the automation capabilities of the MDE
infrastructure may ease the generation of lower-level
design artifacts and enable the automated generation of
source code products of certain quality.

ISO/IEC/(IEEE) (2007) defines an architecture as
composed of: (a) the fundamental organization of a system
embodied in its components; (b) their relationships to each
other, and to the environment; and (c) the principles
guiding its design and evolution. On that basis, Panunzio
and Vardanega (2013) regards the concept of software
reference architecture as proceeding from: (i) a component
model, to design the software as a composition of
individually verifiable and reusable software units; (ii) a
computational model, to relate the design entities of the
component model, their non-functional needs for
concurrency, time and space, to a framework of analysis
techniques which assures that the architectural description
is statically analyzable in the dimensions of interest by

http://www.ignited.in/

International Journal of Information Technology and Management

Vol. III, Issue No. I, August – 2012, ISSN 2249-4510

Available online at www.ignited.in Page 3
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

construction; (iii) a programming model, to ensure that the
implementation of the design entities obeys the semantics,
the assumptions and the constraints of the computational
model; (iv) a conforming execution platform, which actively
preserves at run time the system and software properties
asserted by static analysis and it is able to notify and react
to possible violations of them.

Although real-time embedded systems are increasingly
being developed with object-oriented languages and
techniques, to enable the same level of cross-company
reuse and rapid application development, a component
model and supporting tools are needed. However, existing
enterprise models (such as JavaBeans, .NET, Corba, etc.)
do not address the unique challenges of embedded
systems:

 Embedded platforms are extremely cost and power
sensitive : to minimize cost and power
consumption, a wide variety of CPUs, peripherals,
and memories are employed with limited code
space and MIPS capacity.

 Embedded software must be "optimal": to work
within the constraints of small memory and
relatively slow clock rates necessitated by the cost
and power constraints, software must be as small
and fast as possible.

 Existing software is predominantly written in C and
assembly language: neither standard definition of
interfaces nor a common runtime that enables
multiple implementations of an interface within a
single application exists.

 No standard C/C++ compiler tool chain exists for
all devices: while GCC supports many CPUs, to
achieve the necessary performance from their
"portable" ANSI C code bases, developers must
leverage C/C++ compilers from the device
manufactures that achieve "optimal" performance
for their devices.

Several component models have been created to meet
these challenges, but these models and their tool chains
are often tied to a specific compiler, embedded operating
system, embedded hardware platform, or host
development platform. In addition, the more sophisticated
models can't be scaled down to support popular but
resource constrained devices such as an Intel 8051 or a
Texas Instruments MSP430; for example, Corba all but
requires a C++ runtime but – because of device memory
constraints – no practical C++ support exists for the
MSP430. As a result, embedded developers can rarely

leverage these models and can't afford to invest the time
required to learn them. Components created for these
models can only be used in a limited number of embedded
platforms, defeating the opportunity to reuse these
components or the skills required to create them in more
than just a few closely related projects.

THE RTSC MODEL

Sometimes through heroism you can make something
work. However, understanding why it worked, abstracting
it, making it a primitive is the key to getting to the next
order of magnitude of scale. – Robert Calderbank

The RTSC model and tools enable development of
components written in C using any compiler tool chain
on any development host for any embedded platform.
These components can be configured, assembled, and
optimized for use within any embedded real-time system.
By focusing on design-time rather than on runtime
component assembly, the RTSC model and tools enable
many of the component-based benefits to scale down to
even the most resource constrained embedded system
while leveraging existing C/C++ code bases and tool
chains.

The RTSC tools, developed over a period of 7 years, are
already in use by several Texas Instruments (TI)
development groups and have been used to produce
"mass market" products such as the DSP/BIOS Real-Time
Operating System and the Codec Engine multi-media
middleware framework. While these products enjoy the
benefits of not having to reinvent the capabilities provided
by the RTSC tools, the value of these tools and the
motivation to create new tools increases dramatically as
adoption of RTSC increases. However, wide-spread
adoption is only possible if the model and base tooling are
open and freely available.

SCOPE

The goal for the RTSC project is to refine and standardize
the core RTSC component model and foundational tools in
an effort to bring component-based development
advantages to all embedded C/C++ developers. The
elements included in this project are listed in the Core
Architectural Elements section below.

By making this core infrastructure open, extensible, and
freely available, we expect to seed additional projects that
provide

http://www.ignited.in/

International Journal of Information Technology and Management

Vol. III, Issue No. I, August – 2012, ISSN 2249-4510

Available online at www.ignited.in Page 4
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

 More sophisticated tools for component
development: unit test frameworks, refactoring
tools, etc.

 Integration with other popular embedded tools and
languages: UML, Doxygen, static checking tools
(e.g., Coverity Prevent or Klockwork), etc.

 alternative or domain-specific component
composition tools; e.g., a GEF based tool to create
an application from existing components or a multi-
core component development environment such
as Zeligsoft's CE 3.0 product

 rich visualization of component-based applications:
graphical representations of the relationships
among constituent components, Dependency
Structure Matrixtools, etc.

 extensions of existing component-based tools
enjoyed by the Java developer to support RTSC
components

It is not a goal of this project to create the tools described
above, rather the goal is to provide the common foundation
to enable the creation of these more advanced capabilities
by other groups. We want nothing less than a robust
component-based development platform suitable
for any embedded system built atop Eclipse.

Each of these projects benefits from a standard underlying
component model and will, if we are successful, bring a
complete set of modern component-based tools to all
embedded C/C++ developers. In addition, these projects
will help shape the roadmap of the core RTSC project by
adding new requirements or uncovering new use-cases
that need to be supported.

CONCLUSION:

In this paper we found that the RTSC component model
centers around three top-level
concepts: modules, interfaces, and packages. Roughly
speaking, modules correspond to Java or C++ classes,
interfaces correspond to Java interfaces, and packages
correspond to Java jars. Unlike Java, however, RTSC
components provide code for two distinct environments:
development hosts (with "unlimited" resources) and
embedded runtime platforms (with very limited resources).
It is this ability for components to operate in and be
"configured" on the development host that allows them to
scale their runtime requirements to a level appropriate for
each embedded system in which they operate.

REFERENCES:

o Schmidt, 2006, D.C. Schmidt,Model-driven
engineering, IEEE Comput., 39 (2) (2006), pp. 25–
31

o Bordin and Vardanega, 2007,M. Bordin, T.
Vardanega,Correctness by construction for high-
integrity real-time systems: a metamodel-driven
approach,Proceedings of the 12th International
Conference on Reliable Software Technologies –
Ada-Europe (2007)

o Panunzio and Vardanega, 2007,M. Panunzio, T.
Vardanega,A metamodel-driven process featuring
advanced model-based timing
analysis,Proceedings of the 12th International
Conference on Reliable Software Technologies –
Ada-Europe (2007)

o ISO/IEC/(IEEE), 2007, ISO / IEC / (IEEE), Systems
and Software Engineering – Recommended
Practice for Architectural Description of Software-
Intensive Systems, ISO/IEC 42010 (IEEE Std)
1471-2000,(2007)

o Panunzio and Vardanega, 2013,M. Panunzio, T.
Vardanega,On software reference architectures
and their application to the space domain,13th
International Conference on Software Reuse
(2013), pp. 144–159

o Bordin et al., 2008,M. Bordin, M. Panunzio, T.
Vardanega,Fitting schedulability Analysis theory
into model-driven engineering,Proceedings of the
20th Euromicro Conference on Real-Time Systems
(2008)

Web links-

o http://eclipse.org/proposals/rtsc/

o http://www.sciencedirect.com/science/article/pii/S0
164121214001381

o http://www.cs.uni.edu/~mccormic/RealTime/what.h
tml

http://www.ignited.in/

