

REVIEW ARTICLE

Study of Political Representations:
Diplomatic Missions of Early Indian to

Britain

Journal of
Advances and

Scholarly
Researches in

Allied
Education

Vol. 3, Issue 6,
April-2012,
ISSN 2230-

7540

International Journal of
Information Technology

and Management

Vol. VIII, Issue No. XII,
May-2015, ISSN 2249-4510

AN

INTERNATIONALLY

INDEXED PEER

REVIEWED &

REFEREED JOURNAL

TEST CASES GENERATION: APPROACH TO
REDUCE THE COMPLEXITY TO ANALYZE THE

CODE

www.ignited.in

Sheo Kumar1 Dr. Rajan Anand Malik2

w
w

w
.i

gn
it

e
d

.i
n

1

 International Journal of Information Technology and Management
Vol. VIII, Issue No. XII, May-2015, ISSN 2249-4510

Test Cases Generation: Approach to Reduce the
Complexity to Analyze the Code

Sheo Kumar1 Dr. Rajan Anand Malik2

1
JJTU Scholar, Jhunjhunu

2
Director JEMTEC Greater Noida

Abstract – The shorter life-cycle of software development, such as the one suggested by the agile
programming discipline, also imposes restrictions and constraints on how regression testing can be
performed within limited resources. Naturally, the most straightforward approach to this problem is to
simply execute all the existing test cases in the test suite; this is called a retest-all approach. However, as
software evolves, the test suite tends to grow, which means it may be prohibitively expensive to execute
the entire test suite.

Keywords: Software Testing, Test Cases

- - - - - - - - - - - - - - X - - - - - - - - - - - - - -

INTRODUCTION

Regression testing is performed when changes are
made to existing software; the purpose of regression
testing is to provide confidence that the newly
introduced changes do not obstruct the behaviors of
the existing, unchanged part of the software. It is a
complex procedure that is all the more challenging
because of some of the recent trends in software
development paradigms. For example, the component
based software development method tends to result in
use of many black-box components, often adopted
from a third-party. Any change in the third-party
components may interfere with the rest of the software
system, yet it is hard to perform regression testing
because the internals of the third-party components
are not known to their users. A number of different
approaches have been studied to aid the regression
testing process. The three major branches include test
suite minimization, test case selection and test case
prioritization. Test suite minimization is a process that
seeks to identify and then eliminate the obsolete or
redundant test cases from the test suite. Test case
selection deals with the problem of selecting a subset
of test cases that will be used to test the changed
parts of the software. Finally, test case prioritization
concerns the identification of the „ideal‟ ordering of test
cases that maximizes desirable properties, such as
early fault detection. Existing empirical studies show
that the application of these techniques can be cost-
effective.

REVIEW OF LITERATURE:

Software test case generation techniques:

The total cost, time and effort required for overall
testing depends on total number of test cases. A test
case is a set of inputs given to the software or
application to get the pre-specified output. The effort
basically depends on the size of the application and
the number of test cases.R.P. Mohapatra and
Jitendra Singh describe the step by step method for
test case generation technique.

1. The first step is to find all possible constraints
from start to finish nodes. A constraint is a
pair of algebraic expressions which dictate
conditions of variables between start and
finish nodes.

2. To reduce the test cases, the highest value is
assigned to the variable having maximum
value and the lowest value is assigned to
minimum value within its specified range.

3. After this, the constant value is assigned to
the given variable at each node in the defined
path.

4. Finally table is created that includes all
possible test cases.

Leung and White categorize test cases into five
classes as reusable, retest able, obsolete, structural,
new specification and new structural test cases.

Sheo Kumar1 Dr. Rajan Anand Malik2

w
w

w
.i

gn
it

e
d

.i
n

2

 Test Cases Generation: Approach to Reduce the Complexity to Analyze the Code

Reusable test cases only execute the parts of the
program that remain unchanged between two
versions. Re-testable test cases execute the parts of a
program that have been changed in another program.
Obsolete Test Cases can be rendered obsolete
because their input/output relation is no longer correct,
due to changes in specifications and they don‟t test
what they were designed to test due to modifications in
the program. There are some methods of test case
generation that depends on the application like test
case generation for web application, object oriented
application, structured based systems, UML
applications, applications based on evolutionary and
genetic algorithms and many others. Software is
tested by using some set of inputs and its success
depends on the expected outputs derived from the test
case conditions. Throughout the years, several
different testing have been proposed for generating
test cases.

TEST SUITE MINIMIZATION:

Test suite minimization techniques aim to identify
redundant test cases and to remove them from the test
suite in order to reduce the size of the test suite. The
minimization problem described by Definition 1 can be
considered as the minimal hitting set problem. Note
that the minimal hitting set formulation of the test suite
minimization problem depends on the assumption that
each ri can be satisfied by a single test case. In
practice, this may not be true. For example, suppose
that the test requirement is functional rather than
structural and, therefore, requires more than one test
case to be satisfied. The minimal hitting set formulation
no longer applies. In order to apply the given
formulation of the problem, the functional granularity of
test cases needs to be adjusted accordingly. The
adjustment process may be either that a higher level of
abstraction would be required so that each test case
requirement can be met with a single test scenario
composed of relevant test cases, or that a „large‟
functional requirement needs to be divided into smaller
sub-requirements that will correspond to individual test
cases.

 Heuristics:

The NP-completeness of the test suite minimization
problem encourages the application of heuristics;
previous work on test case minimization can be
regarded as the development of different heuristics for
the minimal hitting set problem [1–3]. Jeffrey and
Gupta extended the HGS heuristic so that certain test
cases are selectively retained [4, 5]. This „selective
redundancy‟ is obtained by introducing a secondary
set of testing requirements. When a test case is
marked as redundant with respect to the first set of
testing requirements, Jeffrey and Gupta considered
whether the test case is also redundant with respect to
the second set of testing requirements. If it is not, the
test case is still selected, resulting in a certain level of
redundancy with respect to the first set of testing
requirements. The empirical evaluation used branch

coverage as the first set of testing requirements and
all-uses coverage information obtained by data-flow
analysis. The results were compared to two versions of
the HGS heuristic, based on branch coverage and def-
use coverage. The results showed that, while their
technique produced larger test suites, the fault
detection capability was better preserved compared to
single-criterion versions of the HGS heuristic. Whereas
the selective redundancy approach considers the
secondary criterion only when a test case is marked as
being redundant by the first criterion, Black et al.
considered a bi-criteria approach that takes into
account both testing criteria [6]. They combined the
def-use coverage criterion with the past fault detection
history of each test case using a weighted-sum
approach and used Integer Linear Programming (ILP)
optimization to find subsets. The weighted-sum
approach uses weighting factors to combine multiple
objectives. For example, given a weighting factor α
and two objectives o1 and o2, the new and
combined objective, o 0 , is defined as follows:

 o 0 = αo1 + (1 − α)o2

Consideration of a secondary objective using the
weighted-sum approach has been used in other
minimization approaches [7] and prioritization
approaches [8].

COMPLEXITY TO ANALYZE THE CODE:

The Software complexity is based on well-known
software metrics, this would be likely to reduce the
time spent and cost estimation in the testing phase
of the software development life cycle (SDLC), which
can only be used after program coding is done.
Improving quality of software is a quantitative
measure of the quality of source code. This can be
achieved through definition of metrics, values for
which can be calculated by analyzing source code or
program is coded. A number of software metrics
widely used in the software industry are still not well
understood [9]. Although some software complexity
measures were proposed over thirty years ago and
some others proposed later. Sometimes software
growth is usually considered in terms of complexity
of source code. Various metrics are used, which
unable to compare approaches and results. In
addition, it is not possible or equally easy to evaluate
for a given source code [10]. Software complexity,
deals with how difficult a program is to comprehend
and work with [11]. Software maintainability [12-13],
is the degree to which characteristics that hamper
software maintenance are present and determined
by software complexity. There dependencies are
shown in Fig. 1.

Sheo Kumar1 Dr. Rajan Anand Malik2

w
w

w
.i

gn
it

e
d

.i
n

3

 International Journal of Information Technology and Management
Vol. VIII, Issue No. XII, May-2015, ISSN 2249-4510

Fig. 1: Relationship between software complexity
metrics and software systems

CONCLUSION:

From software engineering point of view software
development experience shows, that it is difficult to set
measurable targets when developing software
products. Produced/developed software has to be
testable, reliable and maintainable. On the other side,
“You cannot control what you cannot measure” [79]. In
software engineering field during software process,
developers do not know if what they are developing is
correct and guidance are needed to help them
accustom more improvement. Software metrics are
facilitating to track software enhancement.

REFERENCES:

1. Chen TY, Lau MF. Dividing strategies for the
optimization of a test suite. Information
Processing Letters 1996; 60(3):135–141.

2. Harrold MJ, Gupta R, Soffa ML. A
methodology for controlling the size of a test
suite. ACM Transactions on Software
Engineering and Methodology 1993; 2(3):270–
285.

3. Horgan J, London S. ATAC: A data flow
coverage testing tool for c. Proceedings of the
Symposium on Assessment of Quality
Software Development Tools, IEEE Computer
Society Press, 1992; 2–10.

4. Offutt J, Pan J, Voas J. Procedures for
reducing the size of coverage-based test sets.
Proceedings of the 12th International
Conference on Testing Computer Software,
ACM Press, 1995; 111–123.

5. Jeffrey D, Gupta N. Test suite reduction with
selective redundancy. Proceedings of the 21st
IEEE International Conference on Software

Maintenance 2005 (ICSM‟05), IEEE Computer
Society Press, 2005; 549–558.

6. Jeffrey D, Gupta N. Improving fault detection
capability by selectively retaining test cases
during test suite reduction. IEEE Transactions
on Software Engineering 2007; 33(2):108–
123.

7. Black J, Melachrinoudis E, Kaeli D. Bi-criteria
models for all-uses test suite reduction.
Proceedings of the 26

th
 International

Conference on Software Engineering (ICSE
2004), ACM Press, 2004; 106–115.

8. Hsu HY, Orso A. MINTS: A general
framework and tool for supporting test-suite
minimization. Proceedings of the 31

st

International Conference on Software
Engineering (ICSE 2009), IEEE Computer
Society, 2009; 419–429.

9. Walcott KR, Soffa ML, Kapfhammer GM,
Roos RS. Time aware test suite prioritization.
Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA
2006), ACM Press, 2006; 1–12.

10. T. J. M. Cabe, “A complexity measure,”
IEEET Ransactions on Software Engineering,
vol. 2, 1976

11. I. Herraiz, J. M. G. Barahona, and G. Robles,
“Towards a theoretical model for software
growth,” in 29th International Conference on
Software Engineering Workshops
(ICSEW'07).

12. W. Harrison, K. Magel, R. Kluczny, and A.
Dekok, Applying Software Complexity Metrics
to Program Maintenance Compute, vol. 15,
pp. 65-79, 1982.

13. T. D. Marco, “Controlling software projects,”
Prrntice Hall, New York, 1982.

