

REVIEW ARTICLE

Study of Political Representations:
Diplomatic Missions of Early Indian to

Britain

Journal of
Advances and

Scholarly
Researches in

Allied
Education

Vol. 3, Issue 6,
April-2012,
ISSN 2230-

7540

International Journal of
Information Technology

and Management

Vol. X, Issue No. XV,
May-2016, ISSN 2249-4510

AN

INTERNATIONALLY

INDEXED PEER

REVIEWED &

REFEREED JOURNAL

AUTOMATED SOFTWARE TESTING: ANALYSIS ON
TEST CASE OPTIMIZATION AND TEST CASE

LEVELS

www.ignited.in

Ranjeet Kumar1 Dr. Ramdip Prasad2

w
w

w
.i

gn
it

e
d

.i
n

1

 International Journal of Information Technology and Management
Vol. X, Issue No. XV, May-2016, ISSN 2249-4510

Automated Software Testing: Analysis on Test
Case Optimization and Test Case Levels

Ranjeet Kumar1 Dr. Ramdip Prasad2

1
Research Scholar, Magadh University, Bodhgaya

2
Associate Prof., Dept. of Mathematics, J. N. L. College, Khagaul, Patna

Abstract – Testing is the method of estimating a system or its element(s) with the committed to find
whether it gratifies the quantified necessities or not. Testing is performing a system in order to classify
any gaps, errors, or missing necessities in contrary to the actual necessities. It can be definite as - A
procedure of examining a software item to identify the modifications among standing and necessary
situations (that is defects/errors/bugs) and to estimate the features of the software item (Li, Li, 2009).

Keywords: Testing, Procedure, Software, Life Cycle

- X -

1. INTRODUCTION

Testing depends on the procedure and the connected
shareholders of the project(s). In the IT industry, large
corporations have a team with accountabilities to
estimate the established software in framework of the
given necessities. Moreover, designers also behavior
testing which is called unit testing, the following
professionals are complicated in testing a system
within their respective capacities:

 Software Tester

 Software Developer

 Project Lead/Manager

 End User

Dissimilar corporations have dissimilar descriptions for
persons who test the software on the basis of their
involvement and knowledge such as Software Tester,
Software Quality Assurance Engineer, QA Analyst, etc.
(Prather, Jr., 1987).

It is not possible to test the software at any time during
its sequence, the next two division’s state when testing
should be started and when to end it during the SDLC.

Testing is done in dissimilar forms at each phase of
SDLC (Prather, Jr., 1987).:

 During the necessity collecting phase, the
analysis and confirmation of necessities are
also measured as testing.

 Reviewing the project in the design phase
with the resolved to increase the design is
also measured as testing.

 Testing achieved by a designer on
achievement of the code is also considered
as testing.

It is problematic to establish when to stop testing, as
testing is a never-ending procedure and no one can
claim that software is 100% tested. The following
features are to be measured for stopping the testing
method:

 Testing Deadlines

 Completion of test case execution

 Completion of functional and code reportage
to a confident point

 Bug rate falls below a confident level and no
high-priority bugs are recognized

 Management decision

2. REVIEW OF LITERATURES:

Software Testing is significant because we all make
mistakes. Some of those mistakes are insignificant,
but some of them are exclusive or treacherous. We
necessity to check everything and everything we
produce because things can always go wrong –
 individuals make mistakes all the time. A common
organization for these methods is accessible in

Ranjeet Kumar1 Dr. Ramdip Prasad2

w
w

w
.i

gn
it

e
d

.i
n

2

 Automated Software Testing: Analysis on Test Case Optimization and Test Case Levels

(Arcuri, Yao, 2008, Dunwei, et al., 2011, and B. N.
Biswal, et al., 2010). In (Li, Li, 2009) a classification
background for automatic test case generation
approaches is accessible which is created on software
improvement phase in which testing is applied. In
(Abdurazik, Offutt, 2000) a classification of search-
based automatic test case generation methods is
signified there are dissimilar motives to automate test
case generation task in software testing. Some of the
most significant motives are as follows.

Reducing the cost of software testing - During testing
phase the cost can growth more than the probable
importance due to incongruous test bags these
unfortunate test cases cause wastage of
organizational possessions as well as time. There is a
necessity to minimalize the cost for receiving a
satisfactory product (Object management group,
2003). Reducing human mistakes: In command to find
out how a test case is effective there is no confident
instrument. It essentially depends on the testers
concerned of the necessity. In this method there are
lots of human mistakes and tester basic ability level
taken into contemplation. This leads to the presence of
bugs in the system after testing. To overcome this
problematic, automatic test case generation phase
should be measured (Prather, Jr., 1987).

Increasing software foodstuffs excellence - It is
commonly decided that manual testing is becoming a
blockage and is a recurrent cause of project delays
particularly for big programs. Therefore, automatic test
case project has become significant to certify the
excellence of current day large software products
(Booch, et al., 2001). Plummeting number of test
cases: Generation effective test cases are the
necessary permit for streamlining the test work and
successful the test effectiveness. The test work is
incompetent because of the great number of the
primary test cases, so some Computerization
processes are necessary to improve the test cases
(Deason, et al., 1991).

Covering all system necessities - Automating the test
case generation procedure provides a means to
confirm that test cases have been derived in a
dependable and objective method and that all system
necessities have been protected (Mingsong, et al.,
2006).

3. TEST CASE OPTIMIZATION

Genetic algorithms (Booch, et al., 2001) represent a
class of adaptive search methods and measures
based on the method of accepted heredities and
Darwin’s principle of the endurance of the fittest.
Genetic algorithm searching mechanism starts with a
set of resolution called a population. One resolution in
the populace is called a chromosome. The search
profits for a number of generations, for each
generation the fitter resolutions (based on the
capability purpose) will be designated to form a new
population. Through the series, there are three main

operatives specifically reproduction, boundary and
alteration. The cycle will repeat for a number of groups
until positive dissolution measures are met. A
technique of engendering test bags for operational
testing based on genetic algorithms to cover
compound goal tracks in one run is obtainable. First,
the difficult of producing test cases is expressed as a
multi-objective optimization problematic in which the
number of purposes reductions beside with generation
of test bags. Then, test cases are created using
genomic algorithms integrating with dominion
knowledge. In (Deason, et al., 1991) a Constraint-
based Genomic Algorithm method is used to generate
improved test cases from UML Activity diagram and
Association graphs. (Booch, et al., 2001) Is about test
cases produced for software safety based on GA. The
technique chooses the most preferred test bags in
command to determine the susceptibilities in the
software. This technique can decrease the test time
and progress the test effectiveness to a positive
level. The possibility of collection Pi is definite
permitting to the suitability charge fi of the test case
di in this algorithm.

Since we assume that our work may have mistaken,
hence we all necessity to check our own work.
However some mistakes come from bad
expectations and blind spots, so we might make the
same errors when we check our own work as we
made when we did it. So we may not notice the flaws
in what we have done.

 Ideally, we should get someone else to check our
work because another person is more likely to spot
the flaws.

There are several motives which obviously tell us as
why Software Testing is significant and what are the
main effects that we should consider while testing of
any product or application.

Software testing is very significant because of the
following reasons:

1. Software testing is actually necessary to
point out the faults and mistakes that were
made during the improvement phases.

2. It’s important since it creates sure of the
Consumer’s dependability and their
consummation in the application.

3. It is very significant to confirm the Excellence
of the product. Excellence product provided
to the consumers helps in gaining their
confidence.

4. Testing is required in order to provide the
services to the consumers like the
distribution of high excellence product or
software application which necessitates
lower maintenance cost and hence results

Ranjeet Kumar1 Dr. Ramdip Prasad2

w
w

w
.i

gn
it

e
d

.i
n

3

 International Journal of Information Technology and Management
Vol. X, Issue No. XV, May-2016, ISSN 2249-4510

into more accurate, dependable and reliable
results.

5. Testing is necessary for an effective
presentation of software application or
product.

6. It’s significant to confirm that the application
should not result into any failures because it
can be very exclusive in the future or in the
later platforms of the improvement.

7. It’s necessary to stay in the business.

3.1 A COMPARISON OF TESTING
METHODS:

The following table lists the points that differentiate
black-box testing, grey-box testing, and white-box
testing.

Black-Box
Testing

Grey-Box
Testing

White-Box
Testing

The internal
workings of an
application
need not be
known.

The tester has
limited
knowledge of
the internal
workings of the
application.

Tester has
full
knowledge
of the
internal
workings of
the
application.

Also known as
closed-box
testing, data-
driven testing,
or functional
testing.

Also known as
translucent
testing, as the
tester has
limited
knowledge of
the insides of
the application.

Also known
as clear-
box testing,
structural
testing, or
code-based
testing.

Performed by
end-users and
also by testers
and
developers.

Performed by
end-users and
also by testers
and
developers.

Normally
done by
testers and
developers.

Testing is
based on
external
expectations -
Internal
behavior of
the application
is unknown.

Testing is done
on the basis of
high-level
database
diagrams and
data flow
diagrams.

Internal
workings
are fully
known and
the tester
can design
test data
accordingly.

It is
exhaustive
and the least
time-
consuming.

Partly time-
consuming and
exhaustive.

The most
exhaustive
and time-
consuming
type of
testing.

Not suited for
algorithm
testing.

Not suited for
algorithm
testing.

Suited for
algorithm
testing.

This can only
be done by
trial-and-error
method.

Data domains
and internal
boundaries can
be tested, if
known.

Data
domains
and internal
boundaries
can be
better
tested.

Source from: [9]

4. SOFTWARE TESTING - LEVELS

There are dissimilar stages during the method of
testing. In this chapter, a brief explanation is provided
about these levels.

Stages of testing include dissimilar approaches that
can be used while directing software testing. The
main levels of software testing are:

 Functional Testing

 Non-functional Testing

 Functional Testing

This is a type of black-box testing that is based on the
specifications of the software that is to be tested. The
application is tested by providing input and then the
results are inspected that need to conform to the
functionality it was projected for. Functional testing of
software is directed on a complete, incorporated
system to calculate the system's acquiescence with
its quantified necessities.

There are five steps that are involved while testing an
application for functionality.

Steps Description

I The determination of the
functionality that the intended
application is meant to perform.

II The creation of test data based on
the specifications of the

Ranjeet Kumar1 Dr. Ramdip Prasad2

w
w

w
.i

gn
it

e
d

.i
n

4

 Automated Software Testing: Analysis on Test Case Optimization and Test Case Levels

application.

III The output based on the test data
and the specifications of the
application.

IV The writing of test scenarios and
the execution of test cases.

V The comparison of actual and
expected results based on the
executed test cases.

5. CONCLUSION:

Software testing is the procedure of performing a
program in order to find mistakes. Testing is a very
significant, though exclusive phase in software
improvement and maintenance; it has been assessed
that software testing necessitates between 30 percent
and 50 percent of software improvement (Li, Li, 2009).
A test case is a set of tests achieved in a sequence
and associated to a test objective, which will produce a
number of tests including definite input values,
observed output, estimated output, and any other
information necessary for the test to run, such as
background requirements (Cunning, Rozenblit, 2005).
There has been an important amount of work in
automatic test case generation that challenges to
growth the amount of detected performance. Despite
of these wide researches, there have been few efforts
on signifying an all-around organization, which covers
all prevailing programmed test case generation
methods.

REFERENCES:

A. Abdurazik and J. Offutt, 2000. “Using uml
collaboration diagrams for static checking and test
generation,” in Proceedings of the third International
Conference on the UML. York, UK: Lecture Notes in
Computer Science, Springer-Verlag GmbH, pp. 383 –
395.

A. Arcuri and X. Yao, 2008. “Search based software
testing of object-oriented containers”, Information
Sciences, vol. 178, no. 15, August, pp. 3075-3095.

B. N. Biswal, S. S. Barpanda and D. P. Mohapatra,
2010. International Journal of Computer Applications,
vol. 1, Issue 14.

C. Mingsong, Q. Xiaokang, and L. Xuandong, 2006.
“Automatic test case generation for UML activity
diagrams,” in Proceedings of the 2006 international
workshop on Automation of software test, Shanghai,
China, pp. 2 – 8.

G. Booch, J. Rumbaugh, and I. Jacobson, 2001. The
Unified Modeling Language User Guide. Addison-
Wesley.

G. Booch, J. Rumbaugh, and I. Jacobson, 2001. The
Unified Modeling Language User Guide. Addison-
Wesley.

G. Dunwei, Z. Wanqiu and Z. Yan, 2011. Chinese
Journal of Electronics, vol. 19, no. 2.

“Object management group, 2003.” available at
http://www.omg.org/uml.

Q. Li and J. Li, 2009. Proceedings of the International
Symposium on Intelligent Information Systems and
Applications.

Q. Li and J. Li, 2009. Proceedings of the
International Symposium on Intelligent Information
Systems and Applications.

R. E. Prather and J. P. M. Jr., July 1987. “The path
prefix software testing strategy,” IEEE Transactions
on Software Engineering, vol. 13, no. 7, pp. 761–
766.

S. J. Cunning and J. W. Rozenblit, 2005. “Test
scenario generation from a structured requirements
specification”, journal of Intelligent and Robotic
Systems, vol. 41, no. 2-3, pp. 87-112.

W. H. Deason, D. B. Brown, K. H. Chang, and J. H.
C. II, March 1991. “A rule-based software test data
generator,” IEEE Transactions on Knowledge and
Data Engineering, vol. 3, no. 1,pp. 108 – 117.

