

Khadija Sania Ahmad1* Shaista Khan2 Priyanka3 Nazia Ahmad4

w
w

w
.i

gn
it

e
d

.i
n

7

 International Journal of Information Technology and Management
Vol. 12, Issue No. 1, February-2017, ISSN 2249-4510

The Test Cases Generation: Approaches and
Techniques in Software Testing

Khadija Sania Ahmad1* Shaista Khan2 Priyanka3 Nazia Ahmad4

1
M. Tech in CSE Scholar, Al-Falah University, Dhauj, Faridabad, Haryana

2
M. Tech in CSE Scholar, Al-Falah University, Dhauj, Faridabad, Haryana

3
M. Tech in CSE Scholar, Al-Falah University, Dhauj, Faridabad, Haryana

4
IMAM Abdulrahman Bin Faisal University (Formerly University of DAMMAM)

Abstract – The design of an appropriate test suite for software testing is a challenging task. It requires a
suitable tradeoff between effectiveness, e.g., a sufficient amount of test cases to satisfy the test goals of
a given coverage criterion, and efficiency, e.g., a redundancy-reduced selection of test cases. Recent test
suite optimization approaches, therefore, usually require an explicit enumeration of existing test cases.
The test suite design for covering entire software product lines was even more problematic as the
dependency between test cases, test goals and product configurations has to be taken into account. Due
to the exponential number of configurations with respect to the number of features, an explicit
enumeration of all products for optimizing a product-line test suite is impartibly.

Keywords: Test Case, software testing, model, UML

- - - - - - - - - - - - - - X - - - - - - - - - - - - - -

1. INTRODUCTION

Testing is the procedure of evaluating a system or its
part(s) with the intention to find whether it satisfies the
specified requirements or not. In simple words, testing
is performing a system in order to identify any gaps,
errors, or missing requirements in contrary to the
actual requirements.

Software testing is executed to confirm that the
completed software package functions according to
the expectations defined by the
necessities/specifications. The overall objective of
software testing is not only to find out every software
bugs that lives but also to expose situations that could
negatively impact the customer, usability and/or
maintainability.

From the module level to the application level, this
article describes the different types of testing.
Depending upon the reason for testing and the
software requirements/specs, a combination of testing
methodologies is applied.

Test automation is really two different things testing,
which is one discipline, and automation, which is
another. Automating software testing is no different
than automate secretarial or any other business
function: in each case, a computer is being instructed

to perform a task before performed manually.
Whether these commands are stored in something
called a script or a program, they both have all of the
characteristics of source code.

Requirements can be appointed needs and used to
quantify availability for discharge. Having
Requirements attached to tests likewise diminishes
bewilderment about which Requirements have been
fulfilled or fizzled in light of the consequences of the
test, in this manner make less difficult the test and
mistake log reports. A Requirements network is a
method for recognition track of which prerequisites
have an associated test. A commitment that has
excessively numerous tests might be too for the most
part characterized, and ought to be separated into
discrete occasions, or it might essentially have a
greater number of tests than are expected to take
care of business. Then again, a test that is related
with an excessive number of prerequisites might be
excessively mind boggling and ought to be separated
into littler, detach tests that are more focused to exact
Requirements.

There are two fundamental methodologies: initial one
is tending to every conceivable blend, and one that
depends on tending to the littlest sum conceivable
mixes. Utilizing the previous technique, Requirements
are less demanding to characterize since

Khadija Sania Ahmad1* Shaista Khan2 Priyanka3 Nazia Ahmad4

w
w

w
.i

gn
it

e
d

.i
n

8

 The Test Cases Generation: Approaches and Techniques in Software Testing

interdependencies are not as unsafe, but rather the
quantity of tests delivered is more noteworthy. The last
strategy produces less tests, yet needs a more
muddled methods for characterizing needs so that
connections among them are attested with the
arithmetical exactitude expected to enhance the
quantity of tests.

Relapse testing is performed when changes are made
to existing programming; the motivation behind relapse
testing is to give certainty that the recently presented
changes don't block the practices of the current,
unaltered piece of the product. It is a mind boggling
methodology that is all the all the more difficult as a
result of a portion of the current patterns in
programming improvement ideal models. For instance,
the segment based programming improvement
strategy tends to bring about utilization of many
discovery segments, frequently embraced from an
outsider. Any adjustment in the outsider segments
may meddle with whatever is left of the product
framework, yet it is difficult to perform relapse testing
on the grounds that the internals of the outsider
segments are not known to their clients. The shorter
life cycle of programming advancement, for example,
the one proposed by the nimble programming
discipline additionally forces confinements and
limitations on how relapse testing can be performed
inside constrained assets. Actually, the clearest way to
deal with this issue is to just execute all the current
experiments in the test suite; this is known as a retest-
all approach. Be that as it may, as programming
advances, the test suite has a tendency to develop,
which implies it might be restrictively costly to execute
the whole test suite. These restriction strengths
thought of systems that look to lessen the exertion
required for relapse testing in different ways. Various
diverse methodologies have been contemplated to
help the relapse testing process. The three noteworthy
branches incorporate test suite minimization,
experiment determination and experiment
prioritization. Test suite minimization is a procedure
that tries to recognize and after that dispense with the
old or excess experiments from the test suite.
Experiment determination manages the issue of
choosing a subset of experiments that will be utilized
to test the changed parts of the product. At last,
experiment prioritization concerns the distinguishing
proof of the "perfect" requesting of experiments that
augments attractive properties, for example, early
blame discovery. Existing experimental reviews
demonstrate that the utilization of these methods can
be cost-effective.

2. REVIEW OF LITERATURE

Another extraordinary approach to keep up the
adequacy of the relapse test suite is to have a decent
following system between the components being
worked on. This ought to be a reliable movement
keeping in mind the end goal to keep up the test suites
successfully as it would help test administrator to
confirm the component agenda and approve the test

scope for an element that is being created in the
discharge.

The adequacy of the relapse test suite can be
effortlessly kept up by checking the progressions to
the test suite. An obviously plot process will guarantee
that exclusive tests that are valuable to the whole
testing methodology get added to the test suite, which
guarantees the effectiveness and ease of use of the
test tackle at an abnormal state.

Considering occasional cleanup of old tests is another
awesome way to deal with keep up adequacy of an
element rich relapse test suite. In this situation, all the
current tests in the test suite should be broke down for
their viability in a particular situation. Additionally, there
will be situations where certain components won't be
bolstered in light of the diverse item bearing. In such
cases, the pertinent relapse test suites ought to
likewise be backed off. It will guarantee power of the
relapse test suite for a drawn out stretch of time.

We can likewise gauge the viability of relapse test
suites on a discharge to-discharge premise. It will
permit us to know the main driver for diminishment in
the viability of the test outfit assuming any, and
empower us to make fitting move on the same.

Gathering of a few measurements and their
investigation could likewise be helpful with regards to
the viability of the relapse test suite. It will help we
get great perceivability on the viability of the relapse
test suite. We can consider distinctive
measurements, for example, rate of imperfections
found by the relapse tests suite, their significance,
and so on.

In spite of the immense interest in testing said
above, late data from Capers Jones demonstrates
that the distinctive sorts of testing are generally
insufficient. Specifically, testing commonly just
distinguishes from one-fourth to one-portion of
deformities, while other confirmation techniques, for
example, examinations, are regularly more
successful s. Deficient testing is one of the
fundamental reasons why programming is commonly
conveyed with around 2 to 7 deserts for every
thousand lines of code (KLOC). While this may
appear like an irrelevant sum, the outcome is that
real programming dependent frameworks are being
conveyed and put into operation with hundreds or
even a huge number of lingering imperfections. In
the event that product vulnerabilities, (for example,
the CWE/SAN Top 25 Most Dangerous Software
Errors) are considered security abandons, the rates
are much all the more upsetting.

Plainly, there are real issues with the productivity
and adequacy of testing as it is at present performed
practically speaking.

Khadija Sania Ahmad1* Shaista Khan2 Priyanka3 Nazia Ahmad4

w
w

w
.i

gn
it

e
d

.i
n

9

 International Journal of Information Technology and Management
Vol. 12, Issue No. 1, February-2017, ISSN 2249-4510

The substantial number of testing issues required that
they be ordered. At the top level, these issues were
sorted out into two gatherings

General testing issues that are not particular to a
testing, but rather apply to every diverse sort of
testing.

Test sort particular issues that are particular to a
solitary kind of testing, for example, unit testing,
combination testing, and framework testing.

Test arranging and booking issues frequently happen
when there is no different test arrange, yet rather
exceedingly deficient and shallow outlines in other
arranging records. Test arrangements are regularly
overlooked once they are composed, and experiment
portrayals are frequently confused for general test
arranges. The calendar of testing is frequently
deficient for the measure of testing that ought to be
performed, particularly when testing is fundamentally
manual. Huge testing is frequently put off until past the
point of no return in the advancement procedure,
particularly on tasks utilizing customary successive
improvement cycles.

Partner inclusion and responsibility problems include
having the wrong testing attitude (that the reason for
testing is to demonstrate that the product works as
opposed to discovering absconds), having implausible
testing desires (that testing will discover the majority of
the huge imperfections), and having partners who are
deficient dedicated to and supporting of the testing
exertion.

3. SOFTWARE TEST CASE GENERATION
TECHNIQUUES

The aggregate cost, time and exertion required for
general testing relies on upon aggregate number of
experiments. An experiment is an arrangement of
sources of info given to the product or application to
get the pre-indicated yield. The exertion fundamentally
relies on upon the measure of the application and the
quantity of test cases.R.P. Mohapatra and Jitendra
Singh depict the well ordered strategy for experiment
era system.

The initial step is to locate every conceivable limitation
all the way hubs. A requirement is a couple of
mathematical expressions, which manage states of
factors amongst begin and complete hubs.

To diminish the experiments, the most elevated
esteem is allocated to the variable having greatest
esteem and the least esteem is relegated to least an
incentive inside its predetermined range.

After this, the steady esteem is alloted to the given
variable at every hub in the characterized way.At long
last table is made that incorporates all conceivable
experiments. Leung and White sort test cases into five
classes as reusable, retest capable, out of date, basic,
new detail and new auxiliary experiments. Reusable
experiments just execute the parts of the program that
stay unaltered between two forms. Re-testable
experiments execute the parts of a program that have
been changed in another program. Out of date Test
Cases can be rendered out of date on the grounds that
their information/yield connection is do not right
anymore, because of changes in details and they
don't test what they were intended to test because of
alterations in the program. There are a few
techniques for experiment era that relies on upon the
application like experiment era for web application,
question situated application, organized based
frameworks, UML applications, applications in view of
transformative and hereditary calculations and
numerous others. Utilizing some arrangement of data
sources tests programming and its prosperity relies
on upon the normal yields got from the experiment
conditions. Consistently, a few distinctive testing have
been proposed for creating experiments.

Test suite minimization methods plan to recognize
repetitive experiments and to expel them from the
test suite with a specific end goal to lessen the
measure of the test suite. The minimization issue
depicted by Definition 1 can be considered as the
negligible hitting set issue. Take note of that the
negligible hitting set detailing of the test suite
minimization issue relies on upon the suspicion that
every ri can be fulfilled by a solitary experiment. By
and by, this may not be valid. For instance, assume
that the test prerequisite is utilitarian instead of basic
and, in this manner, requires more than one
experiment to be fulfilled. The insignificant hitting set
plan does not make a difference anymore. With a
specific end goal to apply the given plan of the issue,
the useful granularity of experiments should be
balanced as needs be. The conformity procedure
might be either that a larger amount of reflection
would be required so that each experiment
prerequisite can be met with a solitary test situation
made out of applicable experiments, or that an
"extensive" useful necessity should be isolated into
littler sub-prerequisites that will compare to individual
experiments.

The NP-fulfillment of the test suite minimization issue
supports the use of heuristics; past work on
experiment minimization can be viewed as the
improvement of various heuristics for the negligible
hitting set issue. Jeffrey and Gupta broadened the
HGS heuristic so that specific experiments are
specifically held. This 'particular excess' is acquired
by presenting an optional arrangement of testing

Khadija Sania Ahmad1* Shaista Khan2 Priyanka3 Nazia Ahmad4

w
w

w
.i

gn
it

e
d

.i
n

10

 The Test Cases Generation: Approaches and Techniques in Software Testing

prerequisites. At the point when an experiment is set
apart as repetitive regarding the principal set of testing
necessities, Jeffrey and Gupta considered whether the
experiment is additionally excess as for the second
arrangement of testing prerequisites. On the off
chance that it is not, the experiment is as yet chosen,
bringing about a specific level of excess as for the
main arrangement of testing prerequisites. The
experimental assessment utilized branch scope as the
principal set of testing prerequisites and all-utilizes
scope data acquired by information stream
examination. The outcomes were contrasted with two
renditions of the HGS heuristic, in light of branch
scope and def-utilize scope. The outcomes
demonstrated that, while their procedure created
bigger test suites, the blame recognition capacity was
better saved contrasted with single-rule renditions of
the HGS heuristic. Though the specific excess
approach considers the auxiliary foundation just when
an experiment is set apart as being repetitive by the
principal model, Black et al. considered a bi-criteria
approach that considers both testing criteria.

4. APPROACHES IN TESTING GENERATION

Once an application has been characterized, it should
be exhibited to clients. On account of our sun oriented
power sweater, one clear and generally
straightforward method for showing it to clients is to
depict it as far as appearance, usefulness, and
advantages. It won't be that straightforward for clients,
in any case, to really envision the advantages of the
sweater on the premise of a portrayal as it were. For
instance, by what means will they know whether the
sweater is agreeable and not very warm? A moment,
considerably more refined method for showing the
sweater to clients is to have them attempt on a model.
Clearly, this requires the sweater model have as of
now been produced. This is commonly not the
situation, however. In the early advancement period of
an achievement innovation advancement, the new
innovation either does not exist yet, in light of the fact
that it is not (yet) completely operational, or it would be
too expensive to build up a model. All things
considered, organizations require the early information
with respect to the conceivable estimation of an
application and in regards to the bearing into which an
application ought to be produced. So as to have the
capacity to give substantial info, Klink and Athaide
contend that clients ought to get however much boost
material as could reasonably be expected that mirrors
the sort of data that would be accessible in the
commercial center. The majority of this implies an
introduction strategy is required in which utilizations of
innovative leaps forward can be exhibited to clients
before they have been produced in detail.

A critical normal for such an introduction technique
ought to be that it fortifies clients' creative ability. That
is, the technique ought to prompt clients to envision
the future estimation of the cutting edge development.
Early idea accounts, a particular kind of future item
situations, are especially encouraging in this regard. In

particular, an early idea account is a portrayal and
additionally delineation in which somebody utilizes
another item (idea) in a particular setting. It
incorporates the utilization circumstance of the item, its
advantages, and its traits. It regularly appears as a
story in which a client uses the new item in a future
setting, taking after an exemplary storyline with a
presentation and a completion. The story can likewise
be joined by visual material that shows different plan
parts of the item and its expected condition. In doing
as such, stories bring out symbolism clients can
envision an innovation and its potential advantages by
observing it connected in an item, which utilize is
made express. In our illustration, such a story would
portray/delineate a day from the life of the primary
character of the account (for example, Helen), who
utilizes the sun based power sweater to charge her
mobile phone while cycling to work, to charge her
PDA amid a meeting, and to power her MP3 player
while running through the recreation center after
work. The quality of the early idea account technique
is that it helps clients to look ahead and envision how
the new item could be gainful to them,
notwithstanding when there is no genuine item or
model accessible, when clients are deficient with
regards to learning about the development, and
when they are encountering extraordinary
vulnerability about the leap forward innovation and
its applications. A few organizations have
comprehended the capability of early idea stories
and are utilizing them to clarify their new items.
Vodafone (www.vodafone.com), for example, has a
future area on its site, recounting a story and
vivifying a few potential outcomes of their future
innovation. This empowers their clients to look
ahead, to imagine solid settings in which the new
innovation can be utilized, and to consider potential
outcomes of the new innovation for everyday life.
Early idea accounts are proposed to be viable in light
of the fact that they fortify clients to envision the
circumstance depicted in the story, which empowers
them to give substantial item judgments. Without a
doubt, past research bolsters the claim that the
utilization of visual symbolism in statistical surveying
causes clients' reactions to be more legitimate even
with vulnerability. A few reviews have demonstrated
that the evoked visual symbolism can bolster a
client's item assessment and make it less negative.
For instance, Hoeffler demonstrated that when
clients need involvement and learning about another
item's traits and advantages, they regularly utilize
mental reenactment (i.e., creative energy) to make
deductions about these dubious properties and
advantages to foresee the advancement's utility.

5. SPECIFICATION BASED TEST CASE
GENERATION TECHNIQUES

Particular based frameworks are techniques to
create a game plan of investigations from detail
records, for instance, a formal Requirements
assurance. Undoubtedly, the detail accurately
depicts what the structure is to oversee without

Khadija Sania Ahmad1* Shaista Khan2 Priyanka3 Nazia Ahmad4

w
w

w
.i

gn
it

e
d

.i
n

11

 International Journal of Information Technology and Management
Vol. 12, Issue No. 1, February-2017, ISSN 2249-4510

delineating how to do it. Subsequently, the item test
manufacture has basic information about the item's
handiness without separating it from silly
inconspicuous components. The upsides of this
system join that the Specification record can be used
to decide expected results for test data and that tests
may be made at the same time with diagram and
execution. The latter is moreover profitable for
breaking "Code now test later" practices in
programming building and for making parallel testing
practices for all stages (Subraya and Subrahmanya,
2000).

The Specification need record can be used as a
purpose behind yield checking, on a very basic level
diminishing one of the genuine costs of testing.
Particulars can in like manner be destitute down with
respect to their testability (Memon et al., 1999). The
path toward delivering tests from the points of interest
will habitually help the test fabricate discover issues
with the judgments themselves. In case this movement
is done early, the issues can be abstained from in front
of timetable, saving time and resources. Creating tests
in the midst of progression furthermore allows testing
activities to be moved to a preceding some portion of
the change methodology, thinking about more effective
organizing and use of advantages. Test period can be
self-sufficient of a particular use of the Specifications
(Offutt et al., 1999).

Also, the detail based framework offers a less
perplexing, sorted out and more formal approach to
manage the headway of viable tests than non-
Specification based testing strategies do. The strong
relationship among Specification and tests finds faults
and can enhance backslide testing. A basic usage of
subtle elements in testing is to give test prophets.

The detriments of the assurance based framework with
formal techniques are:

(1) The inconvenience of coordinating formal
examination and the evident or genuine outcome in
wander spending arrangement. Testing is a liberal
piece of the item spending arrangement and formal
techniques offer an opportunity to on a very basic level
reduce testing costs, in this way making formal
procedures additionally charming from the spending
perspective (Liu et al., 2001) and (2) There is more
unmistakable manual effort or methods in making
tests, differentiated and frameworks including
customized time shapes.

6. PORTRAY DIAGRAM-BASED TEST CASE
GENERATION TECHNIQUES

Depict plot based methodologies are procedures to
deliver test cases from model diagrams like UML Use
Case chart. The going with entries concentrate current

draw outline based investigation time frameworks that
have been proposed for standard and electronic
application for a long time.

An essential good position of model-based VandV is
that it can be adequately automated, saving time and
resources. Distinctive central focuses are moving the
testing activities to an earlier piece of the item change
handle and making tests that are free of a particular
use of the arrangement (Javed et al., 2007). The going
with segments portray existing assurance based
techniques that have been proposed since 2000.

Heumann (2001) showed how using use cases to
make test cases can help dispatch the testing
strategy in front of plan for the change lifecycle and
moreover help with testing framework. In an item
change broaden, use cases describe structure
programming necessities. Use case change begins
immediately, so bona fide use cases for key thing
handiness are available in early cycles. As showed
by the Rational Unified Process (RUP), a use case is
used to totally depict a gathering of exercises
performed by a structure to give a discernible delayed
consequence of noteworthy worth to a man or
another system using the thing being taken a shot at.
Use cases prompt the customer what's in store, the
fashioner what to code, the specific creator what to
chronicle and the analyzer what to test. He proposed
three-organize method to make test cases from a
totally ordered uses case:

(1) For every use case, create a full game plan
of usage case circumstances

(2) For each circumstance, recognize no short of
what one investigation and the conditions
that will make it execute and

(3) For each analysis, perceive the data values
with which to test.

Ryser and Glinz (2000) brought the helpful issues up
in programming testing as takes after:

(1) Absence of masterminding/time and cost
weight,

(2) Absence of test documentation,

(3) Absence of equipment support,

(4) Formal vernacular/Specification testing
tongues required,

(5) Absence of measures, estimations and data
to gauge testing and survey test quality and

Khadija Sania Ahmad1* Shaista Khan2 Priyanka3 Nazia Ahmad4

w
w

w
.i

gn
it

e
d

.i
n

12

 The Test Cases Generation: Approaches and Techniques in Software Testing

(6) Lacking test quality.

Their proposed approach to manage settle the above
issues is to get test cases from circumstances/UML
use cases and state outlines. In their work, the time of
tests is done in three stages:

(1) Preparatory examination and test game plan in
the midst of circumstance creation,

(2) Experiment period from State outline and
dependence charts and

(3) Test set refinement by application subordinate
frameworks (regular, experience based
testing).

Nilawar and Dascalu (2003) were enthused about
testing on the web applications. Online applications
are of creating multifaceted nature and it is a certified
business to test them precisely. They focused on
revelation testing which enables the item testing
authorities to derive sets of data conditions that will
totally rehearse each and every utilitarian essential.
They assumed that revelation testing is all the more all
things considered suitable and more imperative for
web applications than various sorts of use. Plus, they
proposed four phases to deliver test cases, in
perspective of J. Heumann's four-phases (Heumann,
2001), as takes after:

(1) Organize use cases in perspective of the need
traceability matrix,

(2) Create likely sufficient use cases and test
circumstances,

(3) For each circumstance, recognize no short of
what one investigation and the conditions and

(4) For each analysis, perceive test data values.

They furthermore showed that the investigation
contains: a course of action of test information
sources, execution conditions and expected results
made for a particular objective.

Sinha and Smidts (2005) depicted another model
based testing methodology made to perceive
fundamental zone requirements. The new technique
relies on upon showing the structure under test using a
particularly Domain Specific Language (DSL). In the
new framework, information about space Specification
essentials of an application are discovered actually by
manhandling properties of the DSL and are along
these lines introduced in the test appear. The new
system is associated with make test cases for the
applications interfacing with social databases and the
case DSL. Test suites delivered using the new
techniques are upgraded with tests tending to space
Specification comprehended necessities.

7. SOURCE CODE-BASED TEST CASE
GENERATION TECHNIQUES

Source code-based techniques generally use control
stream information to recognize a game plan of
approaches to be secured and create appropriate trials
for these ways. The control stream outline can be
gotten from source code. The result is a plan of
examinations with the going with association:

(1) Experiment ID,

(2) Test data,

(3) Test progression (generally called test steps),

(4) Expected result,

(5) Real result and

(6) Pass/crash and burn status.

The goings with segments delineates the source
code-based frameworks that have been proposed
since 1999.

8. RESEARCH CHALLENGES

Each investigation time procedure has feeble and
strong concentrations, as tended to in the written
work survey.

• Inefficient Test Case Generation Techniques
with Limited Resources (e.g., Time, Effort
and Cost): The item testing time of a wander
is consistently allowed most diminished
need. Ordinarily, programming testing
engineers have a little measure of time,
effort and cost to mastermind and
arrangement explore, run test cases and
survey test cases independently. Existing
systems are not reasonable for complex
applications with limited resources (e.g.,
time, effort and cost), both standard and web
applications. An instance of a brain boggling
web application is an application with
component direct, heterogeneous portrayals,
or novel control and data stream parts

• Lack of Ability to Identify Critical Domain
Requirements: The present trial time
techniques don't have the ability to address
space specific necessities, because those
essentials are not explicitly inspected in the
assurance report. For an instance of this
issue, where a procedure is proposed to
make test cases for persistent systems

• Ignore Size of Test Case: Existing test time
strategies intend to create test cases which
extend cover for each circumstance. At
times, they make generous trials which are

Khadija Sania Ahmad1* Shaista Khan2 Priyanka3 Nazia Ahmad4

w
w

w
.i

gn
it

e
d

.i
n

13

 International Journal of Information Technology and Management
Vol. 12, Issue No. 1, February-2017, ISSN 2249-4510

hard to execute given obliged time and
resources

CONCLUSION

In this paper, the experiments era: methodologies and
systems in software testing. We have primarily focused
on test case generation of object-oriented software
automatically. We have additionally investigated the
strategy for utilization of developmental calculation like
hereditary calculation to the programmed approach of
testing. In this review we have proposed a way to deal
with create test cases for question situated projects by
utilizing UML action charts. We have utilized a
heuristic manage to get the lessened experiments,
which fulfill way scope as the test sufficiency criteria. In
this paper, we have considered just the basic way for
programmed experiment era. Our approach
accomplishes the greatest branch scope and way
scope, which is an additional preferred standpoint.

Our approach is not appropriate to deal with the huge
and complex framework. This approach is particularly
appropriate for straightforward frameworks where no
more fork-joins, as settled fork joins and so on are
included, which is our next goal. However our
proposed framework is not adequate to deal with
various sort of blunders, for example, work process
mistakes, state based mistakes and so on. To conquer
this bottleneck, a consolidated approach is basic and
thus we have utilized the different UML outlines, for
example, Activity, Class and Sequence chart. For our
approach we have considered both Activity graph and
Collaboration chart and we call them "air conditioning
outline". We plan these two charts just for the situation
of higher need. We utilize coordinated effort outline, in
light of the fact that dissimilar to grouping chart, it
demonstrates the connections among s and
arrangement number of a message unequivocally.
Coordinated effort outline is additionally equipped for
taking care of more intricate fanning. The movement
chart is utilized in light of its dynamic conduct of
displaying. We can envision, build, indicate and
archive the dynamic parts of a protest.

REFERENCES

Abraham Silberschatz, Henry F.Korth and
S.Sudarshan, ―Database system concepts‖,
Internation Edition ,2006,pp 739-741.

Ajitha Ranjan (2006). ―Automated Requirements-
Based test case Generation‖. Communications
of ACM.

Antonia Bertolino (2007). ―Software testing Research:
Achievements, challenges and dreams ‖Future
of Software Engineering.

B. N. Biswal, S. S. Barpanda and D. P. Mohapatra
(2010). International Journal of Computer
Applications, vol. 1, Issue 14.

David Alex Lamb (1988). ―Software Engineering,
planning for change,‖ Prentice Hall,
Englewood Cliffs, NJ 07632, pp. 109– 112.

E. Hassan, A. Mockus, R. C. Holt, and P. M. Johnson
(2005). Guest editor’s introduction: Special
issue on mining software repositories. IEEE
Trans. Softw. Eng., 31 (6): pp. 426–428.

Heumann, J. (2001). Generating test cases from use
cases. Rational Software.
http://www.ibm.com/developerworks/rational/l
ibrary/content/
RationalEdge/jun01/GeneratingTestCasesFr
omUseCasesJune01.pdf.

J. G. Lee and C. G. Chung (2000). ―An optimal
representative set selection method‖.
Information and Software Technology, 42(1):
pp. 17- 25.

Javed, A.Z., P.A. Strooper and G.N. Watson
(2007). Automated generation of test cases
using model-driven architecture. Proceeding
of the Second International Workshop on
Automation of Software Test, May 20 - 26,
Minneapolis, USA, pp. 150-151.

K. Jain, M. N. Murty, and P. J. Flynn (1999). A Data
clustering: review. ACM Computing Surveys,
31(3): pp. 264–323.

Lilly Ramesh (2009). ―Knowledge Mining of Test
Case System,‖ International Journal on
Computer Science and Engineering, Vol.2(1),
pp. 69-73.

M. J. Harrold, R. Gupta, and M. L. Soffa. (1993). A
methodology for controlling the size of a test
suit. ACM Trans. on Soft. Eng. and Meth.,
2(3): pp. 270-285.

Mark Last and Menahem Friedman (2003). ―The Data
Mining approach to automated software
testing.‖.Communications of ACM.

Martina marre and Antonia Bertolino (2006). ―using
spanning sets for coverage testing‖. IEEE
transactions on software Engineering, vol.29.

Memon, A.M., M.E. Pollack and M.L. Soffa (1999).
Using a goal-driven approach to generate
test cases for GUIs. Proceedings of the 21st
International Conference on Software

Khadija Sania Ahmad1* Shaista Khan2 Priyanka3 Nazia Ahmad4

w
w

w
.i

gn
it

e
d

.i
n

14

 The Test Cases Generation: Approaches and Techniques in Software Testing

Engineering, May 16-22, Los Angeles, CA.,
USA., pp. 693-694.

Myra B. Cohen and Matthew B. Dwyer (2006).
―Coverage and adequacy in software product
line testing‖,Communications of ACM.

Offutt, A.J., Y. Xiong and S. Liu (1999). Criteria for
generating specification-based tests.
Proceedings of the 5th International
Conference on Engineering of Complex
Computer Systems, Oct. 18-22, Washington,
USA., pp. 119-119.

R. Blanco, J.Tuya and B. Adenso-Díaz (2009).
―Automated test data generation using scatter-
search approach‖, Information and Software
technology, vol. 51, Issue 4, pp. 708-720.

Remco R. Bouckaert(2009). ―Weka Manual 3-6-1‖,
Software manual, June 4, pp. 11-14.

Sinha A., and C.S. Smidts (2005). Domain specific test
case generation using higher ordered typed
languages from specification. Ph.D. Thesis,
University of Maryland.

Subraya, B. M. and S. V. Subrahmanya (2000). Object
driven performance testing in Web
applications. Proceedings of the First Asia-
Pacific Conference on Quality Software, Oct.
30-31, Hong Kong, China, pp. 17-26.

T. Y. Chen and M. F. Lau (1998). A new heuristic for
test suite reduction. Information and Software
Technology, 40(5): pp. 347-354.

Tapas Kanugo and David M. Mount (2002). ―A local
search approximation algorithm for K-means
clustering‖ Communications of ACM.

Yanping Chen and Robert L. Probert (2007).
―Regression test suite reduction using
extended dependence analysis‖
Communications of ACM.

Corresponding Author

Khadija Sania Ahmad*

M. Tech in CSE Scholar, Al-Falah University, Dhauj,
Faridabad, Haryana

E-Mail – ahmadsania18@gmail.com

mailto:ahmadsania18@gmail.com

