

Priyanka1* Shaista Khan2 Khadija Sania Ahmad3

w
w

w
.i

gn
it

e
d

.i
n

15

 International Journal of Information Technology and Management
Vol. 12, Issue No. 1, February-2017, ISSN 2249-4510

Test Case Prioritization and Optimized Test Case
Generation in Software Testing

Priyanka1* Shaista Khan2 Khadija Sania Ahmad3

1
M. Tech in CSE Scholar, Al-Falah University, Dhauj, Faridabad, Haryana

2
M. Tech in CSE Scholar, Al-Falah University, Dhauj, Faridabad, Haryana

3
M.Tech in CSE Scholar, Al-Falah University, Dhauj, Faridabad, Haryana

Abstract – The outline of a fitting test suite for software testing is a testing errand. It requires an
appropriate tradeoff between viability, e.g., an adequate measure of experiments to fulfill the test
objectives of a given scope rule, and productivity, e.g., a repetition diminished choice of experiments.
Late test suite improvement approaches, along these lines, normally require an unequivocal count of
existing experiments to choose from. The test suite outline for covering whole software product offerings
is significantly more risky as the reliance between experiments, test objectives and item setups must be
considered. Because of the exponential number of setups regarding the quantity of elements, an express
list of all items for advancing a product offering test suite is impartibly. To handle this issue, we propose
an incremental test suite enhancement approach for product offering testing that does not require an
unequivocal portrayal of the arrangement of designs under test, yet rather utilizes a typical portrayal as
far as highlight imperatives.

Keywords: Optimization, Testing and Software

- - - - - - - - - - - - - - X - - - - - - - - - - - - - -

1. INTRODUCTION

Automated software testing is an development in
which software tools execute pre-scripted tests on a
product application before it is discharged into
creation. Automated testing apparatuses are capable
of executing tests, revealing conclusions and
contrasting outcomes and past trials. Tests completed
with these devices can be run over and again,
whenever of day. The technique or process being
utilized to put into practice computerization is known
as a test robotization system. A few structures have
been acknowledged throughout the years by business
merchants and testing associations. Robotizing tests
with business off-the-rack (COTS) or open source
software can be unpredictable, be that as it may, in
light of the fact that they quite often require
customization. In numerous associations, robotization
is just put into honed when it has been unfaltering that
the manual testing project is not meeting prospect and
it is impractical to get more human analyzers.

It is a bungle to expect that test mechanization is just
detained and play again of a manual test handle. Truth
be told, computerization is fundamentally not quite the
same as manual testing: there are altogether
extraordinary issues and possibility. What's more,
even the best computerization will never totally

supplant manual testing, since mechanization is
about certainty and clients are inalienably sporadic.
Along these lines, utilize computerization to confirm
what we expect, and utilize manual testing for what
we don't.

A key believed is that we can't computerize an
improvement that is not officially very much
characterized. A completely manual process might
not have the direction or documentation important to
hold up very much outlined computerization
documentation.

In any case, notwithstanding when the test procedure
is consistently all around characterized,
computerization is as yet a test. The reason of this
report is to conquer any hindrance flanked by what
ought to be tried and how it ought to be
computerized. This starts by laying out certain
fundamental rule that apply which must be
comprehended before achievement is conceivable.
These standards can be reiterated in one essential
start: test product is programming!

Test computerization is truly two distinct things
testing, which is one train, and mechanization, which
is another. Mechanizing software testing is the same
than robotize secretarial or whatever other business

Priyanka1* Shaista Khan2 Khadija Sania Ahmad3

w
w

w
.i

gn
it

e
d

.i
n

16

 Test Case Prioritization and Optimized Test Case Generation in Software Testing

work: for each situation, a PC is being told to play out
an assignment before performed physically.
Regardless of whether these orders are put away in
something many refer to as a script or a program, they
both have the greater part of the attributes of source
code.

Application software must be expected to be viable
over its helpful life, so should our computerized tests.

One reason practicality is so huge is that without it we
can't develop tests. By and large, 25% of an
application is revamped every year; if the tests
connected with the adjusted bits can't be changed with
a sensible measure of exertion, then they will be
outdated. In this manner, as an option of bit by bit
humanizing our test scope after some time by gathers
increasingly test cases.

An amazing experiment ought to have the
fabulousness to cover more elements of test goal. As
such productivity of testing development depends on
the nature of experiments not in the amount of
experiments, which thus waits the testing time. We can
get an appropriate sum number of experiments of
better quality, by taking out repetitive experiments. So
the issue of additional time use in testing stage can be
lessened. Be that as it may, getting every one of those
experiments in a surge time is a profound assignment.
In this manner, programmed era of experiments
decreases the exertion of an analyzer and designer
thus cost and time. There are such a large number of
move toward utilized for programmed experiment
generation by utilizing transformative calculation
calculations, yet they can't manage the excellent
conduct of experiment. A decent experiment ought to
test more than a certain something, in this manner
falling the aggregate number of experiments required.
Our proposed approach is more viable by covering
what it is future to do as well as what it is not planned
to do, by having the effect between these two
conducts.

We utilize UML action charts and Collaboration
outlines as plan stipulation and build up a move toward
for experiment era. UML graphs clarify the diverse part
of software frameworks relying upon the action to be
performed. Plausibility is there that each of this part of
the framework may make diverse sort of blunders. So
it will be particularly valuable to utilize the both of the
graph to handle each of these mistakes. Our approach
utilizes hereditary calculation for era of enhanced
experiments, because of its straightforwardness and
viability.

2. REVIEW OF LITERATURE

 Most normal Key Performance Indicators
(KPIs) in testing depend on the quantity of
experiments as its key metric.
Notwithstanding, the quantity of experiments
does not express the ideal hazard scope that
can be accomplished, since client studies

have uncovered very repetitive experiments
and holes in hazard scope.

 Browse an assortment of techniques to limit
the quantity of experiments. Refine them
promote with our licensed Linear Expansion
system and robotized test suite set up s each
experiment's commitment to hazard scope.

 Instinctive experiment definition, without the
utilization of approach, is as yet the most
widely recognized testing arrangement.
Overviews uncover that this practice conveys
reasonable experiment quality, with hazard
scope of up to 40 – 50 %. Clients who
endeavor to accomplish expanded hazard
scope of 90%+ with natural experiment
definition, frequently come up short since
exponential development of number of
experiments with high redundancies.

 Experiment support requires all adjustments
in test target conduct to be reflected in
experiments. Lithe improvement makes
additionally challenges as a result of its
dynamic nature and its steady condition of
flux. Computerized test suite gives protest
arranged ideas to limit these endeavors.
Regardless of the possibility that clients
prevail with regards to making fitting
arrangements of experiments, frequently
they neglect to keep up these advantages
over a more extended timeframe, therefore
decreasing the estimation of experiments
and trading off the extensiveness of relapse
tests.

 Programming application advancement is a
predictable procedure requiring a great deal
of changes and improvements every now
and then. Nonetheless, not all engineers
figure out how to make applications that
impeccably meet their customers' assorted
needs. As indicated by various reviews, over
70% of programming work identifies with
application support and change.

 As the components or necessities change
and the quantity of such changes develop, it
gets to be distinctly troublesome for
analyzers to perform relapse testing. Be that
as it may, it is conceivable to mechanize
relapse test suites. Mechanizing relapse test
suites will empower the analyzers to
accomplish better test scope all the time.
Additionally, it empowers the assets to
concentrate more on the more up to date
and more convoluted application usefulness.

 In any case, analyzers regularly confront
issues in the support of the computerized
relapse test suites. There are a couple
elements that influence the viability of the

Priyanka1* Shaista Khan2 Khadija Sania Ahmad3

w
w

w
.i

gn
it

e
d

.i
n

17

 International Journal of Information Technology and Management
Vol. 12, Issue No. 1, February-2017, ISSN 2249-4510

relapse test suites. Among them are situations
when test suite upgrades escape match up
with whatever is left of the items or when tests
are added to the suite with a fleeting
viewpoint, accessibility of repetitive tests and
that's only the tip of the iceberg.

Anyway, how to keep up the adequacy of the relapse
test suite, or improve relapse test suite adequately?
Here's the rundown of a few tips that may bail we out:

• Regression Test Selection (RTS) is a standout
amongst the most well-known strategies for
experiment suite enhancement. This strategy
isolates the test suite into reusable
experiments, re-testable experiments and out
of date experiments. Aside from all these, it
likewise makes new experiments that test the
program for ranges not shrouded in current
experiments.

• Another incredible approach to keep up the
viability of the relapse test suite is to have a
decent following system between the
components a work in progress. This ought to
be a reliable movement keeping in mind the
end goal to keep up the test suites viably as it
would help test director to confirm the
component agenda and approve the test
scope for an element that is being produced in
the discharge.

• The viability of the relapse test suite can be
effortlessly kept up by observing the
progressions to the test suite. An unmistakably
sketched out process will guarantee that
exclusive tests that are valuable to the whole
testing technique get added to the test suite,
which guarantees the productivity and ease of
use of the test bridle at an abnormal state.

• Considering intermittent cleanup of old tests is
another awesome way to deal with keep up
viability of an element rich relapse test suite. In
this situation, all the current tests in the test
suite should be broke down for their adequacy
in a particular situation. Likewise, there will be
situations where certain components won't be
upheld in light of the diverse item course. In
such cases, the significant relapse test suites
ought to likewise be dialed down. It will
guarantee power of the relapse test suite for a
drawn out stretch of time.

• We can likewise quantify the viability of
relapse test suites on a discharge to-discharge
premise. It will permit us to know the main
driver for diminishment in the adequacy of the

test outfit assuming any, and empower us to
make fitting move on the same.

• Collection of a few measurements and their
investigation could likewise be helpful with
regards to the adequacy of the relapse test
suite. It will help we get great perceivability on
the viability of the relapse test suite. We can
consider diverse measurements, for example,
rate of deformities found by the relapse tests
suite, their significance, and so forth.

3. TEST CASE SELECTION

Experiment determination is a technique for choosing
a subset of experiments from a test suite to lessen
the time, cost and exertion in programming testing
process. It is especially like test suite minimization
method. The test suite minimization system depends
on measurements like scope measured from a
solitary form of the program under test. The
distinction between these two strategies relies on the
progressions made in SUT. The test cases are
chosen by the changes made between the past and
the present variant of the SUT.

In Model based procedure, the subset of the
necessities gets displayed by utilizing formal
documentations, for example, particulars of the
subset of the prerequisites. (Leon et. al., 2010).
displayed an experimental examination of four unique
strategies for separating huge test suites-test suite
minimization, prioritization by extra scope, bunch
sifting with one group inspecting, disappointment
interest testing. Rothermal [35] also characterize a
strategy for test suite minimization where the
measure of the test can be decreased by disposing of
excess experiments from the test suite. In this way
minimization method is additionally called as test
suite reduction .Leung and White present the first
deliberate way to deal with relapse testing and test
cases. Tallam et.al performed two sorts of
diminishment on the lattice. Lattice is a characteristic
portrayal that backings the distinguishing proof of the
experiments. Test suite improvement issue is
explained by executing the model based test suite
advancement method, in this system the
developmental based calculations are utilized for
upgrading the test suite .Another procedure used to
lessen the aggregate number of experiments are
Extended Finite State Machine(EFSM) .It is
fundamentally used to decrease the relapse test
suites.

4. TEST CASE PRIORITIZATION AND
EVALUATION

Experiment prioritization is a strategy for planning
and positioning the experiments from various test

Priyanka1* Shaista Khan2 Khadija Sania Ahmad3

w
w

w
.i

gn
it

e
d

.i
n

18

 Test Case Prioritization and Optimized Test Case Generation in Software Testing

suites of programming. There are many ways to deal
with timetable and rank the experiments. Every last
experiment is doled out some need however in some
cases there might be a few issues emerge when
various experiments have a similar need or the
weights. Once in a while issue happens in organizing
these numerous test suites. There are two strategies
to conquer these issues.

IT depicts the Multiple Test Suite prioritization (MTSP)
strategy, which is utilized to organize the experiments
from various test suites. The whole program is isolated
into number of test suites and these test suites
contains different experiments. The experiments are
organized by weight and rank that are utilized for
testing the program. Rothermal considered nine
methodologies for organizing an arrangement of
experiments and detailed outcomes. He likewise
displayed distinctive methodologies for uncovering the
flaws to enhance the product quality. Relapse testing
is the way toward testing the product against those
adjustments in the current programming. The four
strategies for relapse testing are-reset technique,
relapse test choice strategy, test suite lessening and
experiment prioritization technique, displayed different
experiment prioritization approaches that depend on a
few criteria.

The main approach is Distribution-based approach, in
which the experiment profiles are dispersed in view of
the uniqueness metric. Utilizing this metric, the groups
of these experiments are set up as indicated by their
profiles. The experiments having comparable profiles
get bunched into one repetitive gathering of
experiments and different gatherings show the
unordinary conditions that cause the experiment
disappointments.

The second approach is Human based approach,
which depends on Case-Based Reasoning (CBR) in
which a Rankshoot calculation is taken that chooses
test cases as indicated by their positions gave. Shin
and Harman [38] gives some different methodologies
where the experiments get organized by the likelihood
of experiment determination methods.The test cases
are chosen in light of a few elements like cost, length
of experiments etc.The history-based approach is
related with the bunches in view of some pervious
curios that are gotten by lattice examination. Some
experiments areprioritized as per the product
necessities of the clients.

Theother approach is demonstrate based approach,
where the applicable experiments are relegated into
high and low need test cases based onthe outlined
model.[Jiripong] depicts an investigation's plan,
estimation measurements and results with a specific
end goal to decide the most prescribed experiment
prioritization strategy.

The experiments are assessed to survey and contrast
the appropriate experiments with test the product. To

assess the experiments, the accompanying
experiment prioritization methods are utilized:

(1) Prepare try information

(2) Run the test suites prioritization strategy

(3) Evaluate comes about.

A few estimations measurements are additionally
utilized as a part of this examination are:

(1) Percentage of high need save viability,

(2) Size of satisfactory experiments,

(3) Total prioritization time.

These techniques help in finding the base number of
experiments for testing programming.

5. TEST CASE SELECTION AND
OPTIMIZAION

Experiment choice is a technique for choosing a
subset of experiments from a test suite to diminish
the time, cost and exertion in software testing
process. It is especially like test suite minimization
system. The test suite minimization system depends
on measurements like scope measured from a
solitary adaptation of the program under test. The
contrast between these two methods relies on the
progressions made in SUT. The experiments are
chosen by the progressions made between the past
and the present variant of the SUT.

 Model based Technique and Extended
Finite State Machine (EFSM)

In Model based procedure, the subset of the
necessities gets displayed by utilizing formal
documentations, for example, details of the subset of
the prerequisites. Biswal, Baikuntha. Narayan,
exhibited an experimental correlation of four unique
strategies for sifting vast test suites-test suite
minimization, prioritization by extra scope, bunch
separating with one group inspecting,
disappointment interest examining. P.D Ratna Raju,
Suresh,Cheekaty, Harish Babu. Kalidasu , likewise
characterize a method for test suite minimization
where the span of the test can be decreased by
disposing of repetitive experiments from the test
suite. In this manner minimization technique is
likewise called as test suite decrease. Leung and
White present the primary efficient way to deal with
relapse testing and experiments. Tillmann et.al
performed two sorts of diminishment on the cross
section. Cross section is a characteristic portrayal
that backings the recognizable proof of the
experiments. Test suite improvement issue is tackled
by actualizing the model based test suite
enhancement procedure. In this procedure the
transformative based calculations are utilized for

Priyanka1* Shaista Khan2 Khadija Sania Ahmad3

w
w

w
.i

gn
it

e
d

.i
n

19

 International Journal of Information Technology and Management
Vol. 12, Issue No. 1, February-2017, ISSN 2249-4510

upgrading the test suite .Another strategy used to
decrease the aggregate number of experiments are
Extended Finite State Machine(EFSM) .It is essentially
used to diminish the relapse test suites.

6. TEST CASE PRIORITIZATION AND
EVALUATION

Experiment prioritization is a technique for planning
and positioning the experiments from various test
suites of software. There are many ways to deal with
timetable and rank the experiments. Every single
experiment is appointed some need yet in some cases
there might be a few issues emerge when different
experiments have a similar need or the weights. In
some cases issue happens in organizing these
different test suites. There are two techniques to
defeat these issues.

 Multiple Test Suite prioritization (MTSP)
method

Legeard, depicts the Multiple Test Suite prioritization
(MTSP) strategy, which is utilized to organize the
experiments from various test suites. The whole
program is partitioned into number of test suites and
these test suites contains various experiments. The
experiments are organized by weight and rank that are
utilized for testing the program. Biswal considered nine
methodologies for organizing an arrangement of
experiments and announced outcomes. He
additionally exhibited diverse methodologies for
uncovering the shortcomings to enhance the product
quality. Relapse testing is the way toward testing the
product against those adjustments in the current
programming. The four strategies for relapse testing
are-reset technique, relapse test determination
strategy, test suite lessening and experiment
prioritization technique. Pakinam, introduced different
experiment prioritization approaches that depend on a
few criteria. The main approach is Distribution-based
approach, in which the experiment profiles are
disseminated in light of the divergence metric. Utilizing
this metric, the groups of these experiments are set up
as per their profiles. The experiments having
comparative profiles get bunched into one excess
gathering of experiments and different gatherings
show the bizarre conditions that cause the experiment
disappointments.

The second approach is Human construct approach
which is situated in light of Case-Based Reasoning
(CBR) in which a Rankshoot calculation is taken that
chooses test cases as indicated by their positions
gave. Pakinam, gives some different methodologies
where the experiments get organized by the likelihood
of experiment determination methods.The test cases
are chosen in view of a few variables like cost, length
of experiments etc.The history based approach is

related with the bunches in light of some pervious
relics that are gotten by grid investigation. Some
experiments areprioritized as indicated by the product
necessities of the clients.

 Model based approach

The other approach is demonstrate based approach,
where the pertinent experiments are allocated into
high and low need test cases in light of the outlined
model, portrays a trial's plan, estimation
measurements and results keeping in mind the end
goal to decide the most suggested experiment
prioritization technique.

The experiments are assessed to evaluate and
contrast the appropriate experiments with test the
product. To assess the experiments, the Following
experiment prioritization systems are utilized :

(1) Prepare try information,

(2) Run the test suites prioritization strategy,

(3) Evaluate comes about.

A few estimations measurements are likewise utilized
as a part of this investigation are:

(1) Percentage of high need hold viability,

(2) Size of adequate experiments,

(3) Total prioritization time.

These techniques help in finding the base number of
experiments for testing programming. The table of
experiment era system positioning is additionally
appeared in that paper in light of these prioritization
strategies with the assistance of Random approach,
Hema's approach, Alexey's technique, MTSSP and
MTSPM techniques for experiment era.

7. CONCLUSION

In this paper, we have primarily focused on test case
generation of object-oriented software automatically.
We have likewise investigated the strategy for use of
developmental calculation like hereditary calculation
to the programmed approach of testing. In this review
we have proposed a way to deal with produce test
cases for protest arranged projects by utilizing UML
movement outlines. We have utilized a heuristic run
to get the decreased experiments, which fulfill way
scope as the test sufficiency criteria. In this part we
have considered just the basic way for programmed
experiment era. Our approach accomplishes the

Priyanka1* Shaista Khan2 Khadija Sania Ahmad3

w
w

w
.i

gn
it

e
d

.i
n

20

 Test Case Prioritization and Optimized Test Case Generation in Software Testing

greatest branch scope and way scope, which is an
additional preferred standpoint.

Our approach is not appropriate to deal with the
extensive and complex framework. This approach is
particularly appropriate for basic frameworks where no
more fork-joins, as settled fork joins and so forth are
included, which is our next goal. However our
proposed framework is not adequate to deal with
various sort of blunders, for example, work process
mistakes, state based blunders and so forth. To
conquer this bottleneck, a joined approach is basic
and henceforth we have utilized the numerous UML
charts, for example, Activity, Class and Sequence
graph. For our approach we have considered both
Activity chart and Collaboration outline and we call
them "air conditioning graph".

REFERENCES

Abdurazik and J. Offutt, ―Using uml collaboration
diagrams for static checking and test
generation,‖ in Proceedings of the third
International Conference on the UML.

Arcuri and X. Yao (2008). ―Search based software
testing of object-oriented containers‖,
Information Sciences, vol. 178, no. 15, August,
pp. 3075-3095.

B. N. Biswal, S. S. Barpanda and D. P. Mohapatra
(2010). International Journal of Computer
Applications, vol. 1, Issue 14.

Binder R.V. (2000). Testing Object Oriented
Systems:Models,Patterns and Tools. Addison
Wesley: USA , 2000.

Biswal, Baikuntha. Narayan et al, (2010). Test Case
Generation and Optimization of Object
Oriented Software using UML Behavioral
Models, NIT, Rourkela, Orissa, India, July,
2010.

Biswal, Baikuntha. Narayan et al, (2010). Test Case
Generation and Optimization of Object
Oriented Software using UML Behavioral
Models, NIT,Rourkela, Orissa, India, July,
2010.

C. Mingsong, Q. Xiaokang, and L. Xuandong, (2006).
―Automatic test case generation for UML
activity diagrams,‖ in Proceedings of the 2006
international workshop on Automation of
software test, Shanghai, China, pp. 2 – 8.

G. Booch, J. Rumbaugh, and I. Jacobson (2001). The
Unified Modeling Language User Guide.
Addison-Wesley.

G. Booch, J. Rumbaugh, and I. Jacobson, (2001). The
Unified Modeling Language User Guide.
Addison-Wesley.

G. Dunwei, Z. Wanqiu and Z. Yan (2011). Chinese
Journal of Electronics, vol. 19, no. 2.

J. A. Jones, M. J. Harrold, (2003). Test Suite
Reduction and Prioritization for

Modified  Coverage, IEEE Transactions on

Software Engineering, 29(3), Pages 195-209,
March 2003.

Legeard B. (2010). Model-Based Testing: Next
Generation Functional Software Testing.
Proceedings of practical Software Testing:
Tool Automation and Human Factors Seminar.
Published by :SchlossDagstuhl_
Leibniz_ZentrumfuerInformatik : Dagstuhl,
Germany, 2010.

M. Prasanna, S. N. Sivanandam, R. Venkatesan, R.
Sundarrajan (2005). ―A Survey on Automatic
Test Case generation‖, Academic Open
Internet Journal, vol. 15.

Object management group (2003). available at
http://www.omg.org/uml.

P. McMinn (2004). ―Search-based software test data
generation: A survey‖, Software Testing,
Verification & Reliability, vol. 14, no. 2, June,
pp. 105–156.
Sharma, A. Jadhav, P. R. Srivastava and R.
Goyal, ―Test cost optimization using tabu
search‖, J. Soft. Eng. Appl., vol. 3, no. 5,
(2010), pp. 477–486.

P.D Ratna Raju, Suresh Cheekaty, Harish Babu.
(2011). Kalidasu, object Oriented Software
Testing, International Journal of Computer
Science and Information Technologies,
Vol.2(5), ISSN: 0975-9646, pg2189-2192.

Pakinam N. Boghdady, NagwaL. Badr, Mohamed
Hashem, Tolba F. Mohamed A. (2011).
Proposed Test Case Generation Technique
Based on Activity Diagrams, International
Journal of ngineering and Technology,
IJETIJENS,ISSN: pp. 114703-5858, Vol:11,
No:03, June 2011.

Q. Li and J. Li, (2009). Proceedings of the
International Symposium on Intelligent
Information Systems and Applications.

Q. Li and J. Li., (2009). Proceedings of the
International Symposium on Intelligent
Information Systems and Applications.

R. E. Prather and J. P. M. Jr. (1987). ―The path prefix
software testing strategy,‖ IEEE
Transactions on Software Engineering, vol.
13, no. 7, pp. 761–766.

S. J. Cunning and J. W. Rozenblit (2005). ―Test
scenario generation from a structured

Priyanka1* Shaista Khan2 Khadija Sania Ahmad3

w
w

w
.i

gn
it

e
d

.i
n

21

 International Journal of Information Technology and Management
Vol. 12, Issue No. 1, February-2017, ISSN 2249-4510

requirements specification‖, journal of
Intelligent and Robotic Systems, vol. 41, no. 2-
3, pp. 87-112.

S. K. Swain, D. P. Mohapatra and R. Mall (2010). ―Test
case generation based on state and activity
models‖, Journal of Object Technology, vol. 9,
no. 5, pp. 1 – 27.

Tillmann N and De Halleux J.Pex__ White Bor. (2008).
Test Generation for .NET. In proceedings of
the second Conference on Tests and Proofs
(TAP) : Prato, Italy, 2008.

V. Rajappa, A. Biradar, S. Panda (2008). ―Efficient
software test case generation using genetic
algorithm based graph theory‖, Proceedings of
the First International Conference on
Emerging Trends in Engineering and
Technology, pp. 298-303.

W. H. Deason, D. B. Brown, K. H. Chang, and J. H. C.
(1991). II, ―A rule-based software test data
generator,‖ IEEE Transactions on Knowledge
and Data Engineering, vol. 3, no. 1,pp. 108 –
117.

Yoo Shin (2001). Minimization, Selection and
Priortization: A Survey, King’s College London,
Centre for Research on Evolution, Search and
Testing, Strand, London, WC2R 2LS, UK.

York, U.K. (2000). Lecture Notes in Computer Science,
Springer-Verlag GmbH, pp. 383 – 395.

Corresponding Author

Priyanka*

M. Tech in CSE Scholar, Al-Falah University, Dhauj,
Faridabad, Haryana

E-Mail – priyankajmi17@gmail.com

mailto:priyankajmi17@gmail.com

