
 

 

Sakshi Arora* 

w
w

w
.i
g

n
it

e
d

.i
n

 

10 

 

 International Journal of Information Technology and Management 
Vol. 14, Issue No. 1, February-2019, ISSN 2249-4510 

A Critical Review on the Significance of XML 
Analysis Technique 

 

Sakshi Arora* 

Department of Computer Science Engineering, SS College of Engineering, Rajasthan Technical University, Kota, 
India 

Abstract – Internet has become the main aspect for searching and transfer of information. For the same 
reason, it requires a language to represent and transfer information. XML (eXtensible Markup Language) 
acts as the standard for representing and interchanging data and information on web. The core operation 
performed on XML document is parsing. Parsing is used to access and manipulate XML data. But this 
parsing process is also one of the biggest hindrance in the development of XML. This paper is a review 
of different parsing techniques which are used to perform the core operation on XML document. 

Keywords – XML Parsing, DOM, SAX, Data Structure Parsing, Database Parsing 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

I. INTRODUCTION 

XML stands for extensible Markup Language, is 
derived from SGML (Standard Generalized Markup 
Language) and is a meta-language. It is broadly 
used for interchange and representation of data on 
web. XML is playing important role in web services 
and commercial workloads. Because of this it is 
important for data servers and web servers to 
process XML document. Processing of XML file 
completes in four steps namely Parsing, Access, 
Modification and Serialization. 

 

Figure 1. XML Processing Stages 

Parsing is the core operation performed on XML 
document. Though XML is easy to understand, its 
parsing causes various bottlenecks in the real-world 
environment [9]. Small files can be parsed easily but 
for large file size, it is difficult to parse them without 
degrading the performance of the parser. By keeping 
this in mind, parallel processing is used to boost the 
performance of XML parsing of large files [7,8]. 
There are different models for XML parsing. 
Document Object Model (DOM) uses tree structure 
for storing parsed data, Virtual Token Descriptor 
(VTD) uses integer array, Simple API for XML (SAX) 
and Streaming API for XML (StAX) create sequence 
of events for parsing. VTD did not create any object 
as it works via integer array while DOM, SAX, StAX 
creates objects for the representation of data. 

II. LITERATURE REVIEW 

Parsing is the main operation performed on XML 
document before navigation, query and 
manipulation. Also, high performance XML parsing 
is used to carry the operation [8]. 

In 2003, Nicola, M. and John, J. explains 
bottleneck of XML parsing across few commercial 
database applications. For a database transaction, 
the computational cost is increased twice or trice 
by parsing even a small XML document [9]. 

In 2006, Tong, T. et al, gave their reviews about 
the XML parser. According to their study, tree-
based approach is not feasible for large size XML 
documents because it requires memory to store the 
entire document and for bigger files, it can easily 
run out of memory [4]. 

In 2009, Lan Xiaoji et. al. explains a new parsing 
model named VTD-XML. It is an open source 
model, based on the technique called Virtual Token 
Descriptor (VTD). Major characteristics of this 
model is random access capability, high 
performance and low memory usage [11]. 

In 2010, Gong Li et. al. suggests a model to 
perform data exchange between XML document 
and relational database. With the help of tree-
branch symbiosis algorithm, the efficiency of DOM 
building will be promoted significantly [12]. 

In 2012, Ma Jianliang et. al. proposed a design of a 
parallel speculative DOM-based XML parser 
(PSDXP) which is implemented with the help of 
Field Programmable Gate Array (FPGA). This 



 

 

Sakshi Arora* 

w
w

w
.i
g

n
it

e
d

.i
n

 

11 

 

 A Critical Review on the Significance of XML Analysis Technique 

design is tested for both two threads parallelism and 
four threads parallelism [13]. 

In 2015, V. M. Deshmukh and G.R. Bamnote perform 
an empirical analysis of different parsers (DOM,SAX, 
PULL Parser, VTD etc.) for an android based 
application. Also, they proposed a new model 
SRDOM which is based on structure recurrence and 
suggested that SRDOM is 9 times faster as 
compared to the DOM parser in presence of 
redundant structure [14]. 

In 2016, Rashmi P.Sonar and M.S. Ali presents 
detail analysis of XML parser for embedded systems. 
They proposed iXML model for embedded systems 
which uses inline method for parsing. It identifies the 
structure of the document and then the attributes of 
the tokens are identified. Further, attributes are 
checked for the well formedness of the document. 
Significant improvement in terms of time is measured 
using this novel approach [15]. 

III. PARSER OVERVIEW 

3.1 Various Parsing Techniques 

Mainly two technologies are used for XML parsing of 
data. First one is SAX (Simple API for XML) [1] and 
the other is DOM (Document Object Model) [2]. SAX 
is an event-based technique which uses serial-
access mechanism for parsing the XML document. It 
considers XML data as stream and callback 
functions are invoked by the application for 
processing. On the other hand, DOM is an object-
oriented model. Data structure is used to represent 
parsing of XML document. It uses tree structure to 
represent parsed data and once it is created, further 
manipulations are done dynamically on the data 
structure. If both the mechanisms are compared, 
DOM is much complex and hence slower than 
SAX.To increase the performance time in DOM 
parser, ache is used as a temporary file [5]. Data is 
stored in cache file after fetched from the main 
database. This approach is very efficient as 
compared to the initial model as it reduces the 
fetching time of data, hence increasing the overall 
performance. 

 

Figure2. DOM Parsing Architecture 

SAX is event based and allows to process data while 
reading, which avoids the waiting time till the whole 
document is stored in the memory. But events are 
generated by fetching data from secondary memory 
and unfortunately, secondary memory is slow. 

 

Figure 3. SAX Parsing Architecture 

3.2 Parallel XML Parsing 

There are various techniques to improve parsing 
performance of XML document. One of them is 
pipelining [3]. In this, parsing is divided into 
different stages and for each stage one thread has 
been assigned which execute that stage. This will 
minimize the time required for parsing the 
document but at the same time it is quite difficult to 
implement pipelining in software because of 
synchronization, high costing for memory and load-
balancing. To overcome this, data parallel 
approach is used. In this, the document is divided 
into small chunks and each chunk is implemented 
by different thread. Before dividing the document 
into chunks, the XML document is passed from a 
pre-parsing phase to determine the document 
structure. After that it is passed by full parser 
[8,17]. The result corresponding to the parsing of 
chunks are merged. But it is difficult to merge it into 
a single tree because the chunks are created 
corresponding to arbitrary parts of the tree. Parallel 
parsing focuses on DOM parsing. In DOM, tree 
data structure is used to store the document in the 
memory. 

 

Figure 4. The PXP Architecture 

3.3 XML Database Parsing 

With respect to transactional database processing, 
XML parsing is having poor characteristic graph of 
performance. Yet its poor impact is not taken into 
consideration. For XML deployed database 
applications, XML parsing proves as a major 
hindrance. Processing model is available to 
transfer data between XML and relational database 
[6,9]. In this model, single table is used to store 
parsed data. Also, for storing and enforcing data 
definition, XML can be used. It provides a 



 

 

Sakshi Arora* 

w
w

w
.i
g

n
it

e
d

.i
n

 

12 

 

 International Journal of Information Technology and Management 
Vol. 14, Issue No. 1, February-2019, ISSN 2249-4510 

synergetic framework for Knowledge Management 
(KM) tools [16]. 

3.4 XML Parsing using Data Structure 

The main task of XML parser is to check the 
document for its well form. It read the document, 
check the syntax and generate error report. The 
syntactically correct document is termed as well-
formed XML document. It requires a root element, a 
start and an end tag, other tags should be properly 
nested and attribute values in quotes. XML DOM and 
SAX parser access the content of the document 
programmatically using language. DOM parser 
generates a tree structure to store parsed data in the 
memory. SAX parser is based on events for parsing 
the document. 

An XML parser reads a document from starting and 
extract tokens like start and end tag. The document 
can be parsed with the help of data structure. For 
example, DOM tree is built by extracting start and 
end token of the XML document. Further stack (S) 
can be used to store information of all the ancestors 
(in DOM tree) of current element. While reading the 
document, if a start tag appears, its corresponding 
DOM node is created, and attribute value associated 
with the element is parsed and stored in the memory. 
When end tag is read, it is matched with the top of 
the stack. If the element is same, popping is done, 
and parsing continues. Otherwise the process is 
aborted as the XML document is not formed well. 
After finishing the reading of the entire document, the 
stack S should be empty for the document to be well 
formed. Various data structures like queue, linked 
list, array and stack are used for parsing XML 
document. [10] shows that data structure-based 
parser works in main memory and hence increases 
its performance as compared to SAX and DOM 
parser. 

IV. CONCLUSION AND FUTURE WORK 

This paper reviews problems related to different XML 
parsers. It also discusses various aspects of 
developing and designing an efficient XML parsing 
algorithm. It also analyzes the performance of XML 
parsing using different data structures. In future 
work, we can carry out comparative study of XML 
parser using multiple data structures. We can also 
perform empirical analysis of different XML parsers 
to check their performance for multiple data 
structures. 

REFERENCES 

1. W3C, ―Extensible Markup Language (XML)‖. 
[Online]. Available: http://www.w3.org/XML. 

2. W3C, ―Document Object Model (DOM) Level 
2 Core Specification‖. [Online]. Available: 
http://www.w3.org/TR/ DOM-Level-2-Core. 

3. Wei Lu, Dennis Gannon, ―Parallel XML 
Processing by Work Stealing‖, SOCP'07, 
June 26, 2007, Monterey, California, USA. 

4. Tong, T. et. al. (2006). ―Rules about XML in 
XML‖, Expert Systems with Applications, Vol. 
30, No.2, pp. 397-411. 

5. Yusof Mohd Kamir, Mat Amin Mat Atar 
(2009). ―High Performance of DOM 
Technique in XML for Data Retrieval‖, in 
International Conference on Information and 
Multimedia Technology IEEE. 

6. Li Gong, Liu Gao-Feng, Liu Zhong, Ru-Kui 
(2010). ―XML Processing by Tree-Branch 
Symbiosis Algorithm‖, in 2nd International 
Conference on Future Computer and 
Communication. IEEE 2010. 

7. Lu W., Dennis Gannon (2008). ―Parallel 
XML Processing by Work Stealing‖, in High 
Performance Distributed Computing 
Archive Proceedings of the 2007 
Workshop on Service Oriented Computing 
Performance. 2008. Monterey California 
USA pp. 31-38. 

8. Lu W., Y. Pan, and K. Chiu (2006). ―A 
Parallel Approach to XML Parsing‖, in the 
7th International Conference on Grid 
Computing, IEEE/ACM. 

9. Nicola M. and J. John (2003). ―XML 
Parsing: A Threat to Database 
Performance‖, in Proc. of the12th 
International Conference on Information 
and Knowledge Management, pp. 175-178. 

10. V. M. Deshmukh, G.R. Bamnote (2013). 
―An Empirical Study: XML parsing using 
Various Data Structures‖, in International 
Journal of Computer Science and 
Applications, 6(2), 2013, pp. 400-405. 

11. Lan Xiaoji Su Jianqiang Cai Jinbao (2009). 
―VTD-XML-based Design and 
Implementation of GML Parsing Project‖, 
IEEE Information Engineering and 
Computer Science, 2009. ICIECS 2009. 
International Conference on 19 Dec. 2009, 
pp.1 – 5. 

12. Gong Li and Liu Gao-Feng, Liu Zhong and 
An Ru-Kui (2010). ―XML Processing by 
Tree-Branch symbiosis algorithm‖, 2

nd
 

International Conference on Future 
Computer and Communication, Volume 1. 

13. Ma Jianliang, Shaobin Zhang, Tongsen Hu 
(2012). ―Parallel Speculative Dom-based 
XML Parser‖, in 2012 IEEE 14th 
International Conference on High 



 

 

Sakshi Arora* 

w
w

w
.i
g

n
it

e
d

.i
n

 

13 

 

 A Critical Review on the Significance of XML Analysis Technique 

Performance Computing and 
Communication & 2012 IEEE 9th 
International Conference on Embedded 
Software and Systems (HPCC-ICESS). 

14. V. M. Deshmukh, G.R. Bamnote (2015). ―An 
Empirical Study of XML Parsers across 
Applications‖, in 2015 International 
Conference onComputing Communication 
Control and Automation (ICCUBEA). 

15. Rashmi P. Sonar and M. S. Ali (2016). ―iXML 
– generation of efficient XML parser for 
embedded system‖, 2016 International 
conference on Computing Communication 
Control and Automation (ICCUBEA). 

16. James R. Otto, James H. Cook and Q.B. 
Chung (2001). ―Extensible Markup Language 
and Knowledge Management‖, in Journal of 
Knowledge Management, 5(3), pp. 278- 284, 
MCB University Press. 

17. Y. Pan, W. Lu, Y. Zhang, and K. Chiu 
(2007). A Static Load-Balancing Scheme for 
Parallel XML Parsing on Multicore CPUs. In 
Proc. of the 7th International Symposium on 
Cluster Computing and the Grid (CCGRID), 
pages 351–362, Washington D.C, May 2007. 

 

Corresponding Author 

Sakshi Arora* 

Department of Computer Science Engineering, SS 
College of Engineering, Rajasthan Technical 
University, Kota, India 

 


