International Journal of Information Technology and Management
Vol. 17, Issue No. 3, November-2022, ISSN 2249-4510

d.) DOL: https://doi.org/10.29070/qnfwhh7s
") Check for updates

Estimate the effort required to develop an
Object-Oriented Software utilizing class point
approach

Manas Prasad Rout ', Prof. Sabyasachi Patitnaik 2

1. Research Scholar, F.M. University, Balasore, Odisha, India,
2. Professor, F.M.University, Balasore, Odisha, India

Abstract: The time and effort put into creating a piece of software may have a significant impact onwhether or not it is
commercially successful. As a second step, we examine the found classes' localmethods and their interplay with the rest of the
system to ascertain their complexity. In softwaredevelopment, estimation is the process of establishing the most precise
measure of size required to designand test the programmed system, based on the software's needs. For calculating rough
estimates of thesize of Objective Oriented OO products, we provide a technique that has resemblance to FP (FunctionPoint) we
call it Class Point. Particularly, two metrics like number of methods and number of attributesare used for user objects that
include design patterns.

Keywords: effort, software development, object oriented software, class point approach, estimation,
complexity, size, design patterns, metrics, user objects

INTRODUCTION

Estimating how much time a software project will take is a constant struggle. As the approaches to be
implemented are unknown at this point in the process, the project managers are unable to make firm
decisions regarding the next steps to take. Researchers and practitioners alike have come to regard object-
oriented technology as the standard approach to creating new software. Encapsulation, inheritance,
polymorphism, abstraction, cohesion, and coupling are only a few of the capabilities provided by the OO
programming model that help to manage the development process in a methodical manner. The size of a
piece of software is a crucial metric. Given that the line of code and the function point (FP) were both used
for the procedural programming concept, traditional software estimation techniques like the Constructive
Cost Estimation Model (COCOMO) and the function point analysis (FPA) have proven to be unsatisfactory
for measuring the cost and effort of all types of software development. Data and procedures are kept
separate in a procedurally oriented design, but are brought together in an object-oriented one. For the
second time, the FP method to effort estimate is only viable during the coding phase of the software
development life cycle. For this reason, an alternative method of estimating labor requirements must be
used at the earliest phases of software development.

Researchers and practitioners that employ statistical approaches like fuzzy, machine learning, etc. to draw
inferences from the data should keep in mind that the difficulty of learning/estimating relationships from
samples is only one aspect of the entire experimental process. As a consequence, it is crucial to think about
data collected from prior projects to get excellent outcomes in predicting software size. It has always been

Manas Prasad Rout, Prof. Sabyasachi Pattnaik www.ignited.in 14

https://crossmark.crossref.org/dialog/?doi=10.29070/qnfwhh75&domain=pdf&date_stamp=2022-11-01
https://doi.org/10.29070/qnfwhh75

International Journal of Information Technology and Management
Vol. 17, Issue No. 3, November-2022, ISSN 2249-4510

crucial to have reliable estimates at hand when making bids or analyzing the financial viability of projects.
In order to generate a more precise answer, the class point approach (CPA) is used to estimate the project
work, since classes are the fundamental logical unit of an object-oriented system. From this class diagram,
we can derive the CPA. As a result, during the software development life cycle (SDLC), the design phase,
CPA may also be used to estimate how much work will go into the project. If you want to estimate the size
of a class using CPA, you may use one of two metrics: CP1 or CP2. A pair of metrics, the number of
external methods (NEM) and the number of services requested (NSR), are used to determine CP1, while a
third variable, the number of attributes (NA), is used to determine CP2 (NOA). The number of locally
specified public methods (NEM) is a measure of a class's interface size. The NSR may be used as a gauge
for how well the various parts of a system interact with one another. Class NOA may be quantified with the
use of the NOA. Calculating the technical complexity factor (TCF) for either the FPA or CPA requires
looking at the impact of various system-level features. However, CPA disregards non-technical aspects
including management efficacy, developer expertise, security, stability, maintainability, and portability. In
light of these six non-technical considerations, CPA has been refined in this study to determine how much
work must go into creating a software product. Fuzzy logic was used to determine the degree of difficulty
for each class before assigning class points. Multi-layer perceptron (ANN), multivariate adaptive
regression splines (MRS), projection pursuit regression (PPR), constrained topological mapping (CTM), K
nearest neighbor regression (KNN), and radial basis network are just some of the adaptive methods of
regression techniques used to improve prediction accuracy (RBFN). In order to back up the conclusion, a
comparison of the outcomes from both methods has been supplied.

The next step is to assess the complexity of the identified classes by analyzing their local methods and the
ways in which they interact with the rest of the system. We may do this by using suitable metrics for OO
classes. The criteria and approaches utilized to finish this stage differ significantly from CP1, the previous
one. As a matter of fact, in CP1 the complexity of each class is determined by the number of required
services and the number of external methods (NSR). In an OOP system, the interface size for a given class
may be roughly estimated using the NEM, which is derived from the number of publics, local methods.
NSR is used to determine how closely related components of a system are to one another and to quantify
that relationship. Again, this affects a specific subset and is proportional to the quantity of services ordered
by the other subsets. In addition to the above metrics, CP2 additionally takes into account the Number of
Attributes (NOA) to determine a class's complexity. After figuring out the level of difficulty associated with
each class, we can use the data and its structure to assign a relative value to each category. Then, the result
for Total Unadjusted Class Points is calculated using a weighted sum (TUCP). Similar to how FPA
determines a score, the Class Point is arrived at by adjusting the TUCP by a value based on system-wide
global features. In addition to proposing these measures, we also provide the results of a theoretical
validation and an empirical validation. In reality, it is commonly accepted that a software measure is only

acceptable and effective once it has been verified.

When developing software, estimation is the process of finding the most precise measure of size required
to design and test the programmed based on the software's needs. The size estimates are used in the
planning, iteration, budgeting, investment analysis, pricing, and bidding processes. Academics and
professionals in the software industry have been grappling with the difficulties of software project
estimation since at least the 1960s. A substantial amount of literature shows that the time, money, and

Manas Prasad Rout, Prof. Sabyasachi Pattnaik www.ignited.in 15

International Journal of Information Technology and Management
Vol. 17, Issue No. 3, November-2022, ISSN 2249-4510

maintenance impacts of planned size are proportional to their size. Software estimation is essential for
effective management of the software development life cycle's multiple phases (SDLC). As the
programmed evolves over time, there must be control over the subsequent release. As a result, it's
important to undertake some estimation work before really developing the product. Both internal and
external factors might be used in the exploration and estimate processes. It is possible to make educated
guesses about the size, complexity, and modularity of a software project. When we talk about "external
qualities," we're referring to attributes that may be measured by considering the project's surroundings.
External attributes include things like reliability, clarity, and ease of upkeep. Because they are highly
dependent on context, it is notoriously difficult to quantify exterior features. As a result, research into the
intrinsic property of "size" has yielded an estimation model.

LITERATURE REVIEW

TiilinErcelebi Ayyildiz et.al (2018) This research examines the relationships between the number of
software classes and methods in object-oriented software and the number of unique nouns and verbs in
requirements artefacts in the issue domain. With this goal in mind, we assessed 14 completed software
development projects at a CMMI Level-3 accredited defense sector business. A linear regression analysis-
based model for size estimation is developed on the basis of the high correlation between the
measurements. On these 14 software projects, the method's predictive performance is evaluated. As a
further observation, it has been shown that the metrics of the issue domain correlate strongly with the
amount of work put into the development process. As a result, the metrics of the issue domain are also
employed in a linear regression analysis to estimate the effort. The anticipated work utilizing the COSMIC
Function Point (CFP) approach to measuring size is also compared with the assessed estimates of work.
The results demonstrate that, in comparison to the work calculated via CFP size measurement, the effort
estimated using the suggested technique is more accurate.

Mr. RUSHIKESH S. RAUT (2020)Object-oriented programming (OOP) is being more widely used in
the real world, which bodes well for the future of the software business and the development of software
engineering. The in-depth study of object-oriented programming necessitates familiarity with certain
aspects. We have learned the constructors and destructors, as well as the benefits and drawbacks of object-
oriented programming, from this work.

Joseph Yoder et.al (2019) There is a large and growing body of knowledge in object-oriented
programming and design that has been amassed over the past 50 years. This body of knowledge suggests
that lowly coupled, highly cohesive, extensible, comprehensible, and robust software designs are some of
the most important qualities in a system. However, this may not be sufficient due to the growing
complexity and heterogeneity of modern software. In this article, we'll look at some of the ways in which
object-oriented design has proven difficult to implement in practice. The complexity of modern real-world
problems requires developers to create not just one but multiple models for the same problem, and we
discuss how existing quality assessment techniques for object-oriented design should go beyond high-level
metrics. Finally, we recommend a list of issues for researchers and practitioners to work on in the near
future. This article is an appeal for more grounded studies in the area of object-oriented software design.

Manas Prasad Rout, Prof. Sabyasachi Pattnaik www.ignited.in 16

International Journal of Information Technology and Management
Vol. 17, Issue No. 3, November-2022, ISSN 2249-4510

Gurusiddaraj Konded et.al (2019) Object-Oriented Software Engineering's (OOSE) popularity has grown
as the software industry and software engineering have progressed, making OOSE a more practical choice
for the real world's software-intensive environments. OOSE has come a long way from its early days in
software assessment and design, and is now widely regarded as one of the software integrations processes
that contribute to a successful product. The OOSE is an effective methodology for software development
because it brings together Object-Oriented Analysis (OOA) models, Object-Oriented Design (OOD), and
Object-Oriented Programming (OOP). After software analysis and design, OOSE offers the potential of
OOP throughout development and production. This article examines the broad concepts and problems that
impact commercial software development.

Osman Gazi Yildirim et.al (2021) In order to keep students interested and motivated in programming
classes, instructors often employ computer games as a teaching aid. The first author, who is also the course
teacher, conducted this participatory action study to improve the quality and efficiency of the Object-
Oriented Programming course he teaches. Questionnaires and semi-structured interviews were used in the
initial phase of the action study to gather data for issue characterization and solution. After this, a plan of
action was developed, and one of its components was a revamped Object-oriented Programming course.
The action plan's goals were reflected in the integration of Unity 3D's The Karting Microgame Template
into the course, with students utilizing C # to implement additional game components like as a bonus
collecting system, scoring, collision mechanics, etc. Afterwards, a plan of action was put into motion.
Twenty-nine post-secondary students enrolled at Turkey's Computer Technology Department for the
implementation phase during the 2019-2020 spring semester. Object-oriented programming exam results,
student and researcher journals, and focus group interviews were used to evaluate the success of this
implementation after it had been put into place. This report details the challenges researchers faced, student
perspectives on the study's execution, and the researchers' own personal experiences.

RESEARCH AND METHODOLOGY

These design patterns may be thought of as a collection of user objects, and these items are divided into
four distinct categories. The 23 design patterns established by Gamma et al.are organized by default into
the categories shown in Table 1. These classifications are arbitrary and determined only by the
commonality of the underlying components that the design patterns are applied to.

The PDT component stores patterns made up of objects/classes that stand in for real-world things in the
system's application domain. Bruegel et al.outlines a centralized database for managing accidents, and they
use items like Incident and Field Officer and Emergency Report as examples.

HIT stands for "human interaction type," and it describes things made to satisfy the demands of data
visualization and user interface design. Regarding the aforementioned scenario, HIT is the owner of the
objects Emergency Report Form and Report Emergency Button.

DMT stands for "data management type," and its associated objects provide storage and retrieval
operations. As shown in, one example of a DMT component is the Incident Management subsystem, which
includes the classes responsible for executing SQL queries to create and retrieve database entries that
represent Incidents.

Manas Prasad Rout, Prof. Sabyasachi Pattnaik www.ignited.in 17

International Journal of Information Technology and Management
Vol. 17, Issue No. 3, November-2022, ISSN 2249-4510

TMT objects are in charge of task definition and management. d. Task management type. In the given
example, there are two objects that provide this function: Manage-Emergency Control and Report
Emergency Control. Objects that provide data transfer across modules hosted on multiple hosts are
likewise part of the task management category. Classes like Message and Connection are common
examples of those belonging to this subsystem.

DATA ANALYSIS
The Class Point Approach

Here, we introduce the Class Point method, which can be used to calculate an approximate OO product
size at the system level. It was designed by adapting the principles of FP analysis to the OO paradigm and
integrating established OO metrics in an appropriate way. The Class Point technique was initially
introduced in, and from there, it was improved, resulting in the development of two measures, CP1 and
CP2, which are described here. The purpose of the suggested technique is, in fact, to provide a strategy that
lets us fine-tune estimations all through the development and make use of fresh data as it becomes
accessible. When first conceptualized, the CP1 measure's purpose was to provide developers with a rough
size estimate as work began. A calculation like that

Table 1: The Class Point Method

1. Information processing size estimation:
asidentification and classification ol classes
beevaluation of complexity level of each class

cesestimation of the Toral Unadjusied Class Point

>

. Technical complexity factor estimation

W

Final Class Point evaluation

Applying CP2, which needs data that are often accessible later in the development phase for calculation,
may provide extra depth. When we were first conceptualizing the Class Point approach as an extension of
FP, we opted against utilizing direct mappings of FP logical files and transactions to classes and methods.
There is a clear delineation between data and operations in the procedural paradigm. In contrast, the notion
of an operation is intrinsic to the idea of a class in the OO paradigm because of the close relationship
between the operations and the data they are used to control. Therefore, the Class Point approach zeroes
emphasis on classes, because they are the units to be counted and weighted according to their complexity
levels, just as with functions in FPA. Each class's complexity is calculated using data about its local
methods, its interaction with other parts of the system, and, if accessible, its properties. Although FPA's
categorization of data function types and transaction function types was developed with business
applications in mind, the Class Point measurements' classification of classes is neutral with respect to the
nature of the applications themselves. Our technique is somewhat similar to POP counting; however, we
differentiate between classes themselves rather than methods. A further difference from POPs is that data
are also included in the Class Point measurements, and the information required to complete the counting is
often accessible at the design phase rather than being substituted by estimated values.

Manas Prasad Rout, Prof. Sabyasachi Pattnaik www.ignited.in 18

International Journal of Information Technology and Management

Vol. 17, Issue No. 3, November-2022, ISSN 2249-4510
The Class Point methodology, used for estimating CP1 and CP2, is described in Section 3.1. The steps that
were taken to arrive at the suggested measures are laid forth in Section 3.2.
The Class Point Method:

Class Point size estimate may be broken down into three distinct stages that mirror those of the FP
methodology. In Table, we see a rough outline of this procedure.

Identification and Classification of User Classes

The Class Points system begins with an analysis of the design requirements to determine the various
classes. There are four main categories of system components.

Table 2: Evaluating the Complexity Level of a Class for CP1

0-4 NEM 5-8NEM >9NEM
0-1NSR Low Low Average
1-3NSR Low Average High
>4 NSR Average High High

Categories issues according on whether they are of the problem domain, human interaction, data
management, or task management varieties (TMT). Classes representing entities in the system's domain of
use are kept in the PDT component. Accordingly, in a decentralised information system for accident
management, such as the one described in, Incident, Field Officer, and Emergency Report are all examples
of PDT classes. Training programmed of the HIT kind are fashioned to meet the need for graphical
representations of data and human-computer interaction. Emergency Report Form and the Report
Emergency Button are two examples of such categories that relate to the first. DMT covers classes that
allow for the archiving and retrieval of information. The Incident Management subsystem of DMT is
responsible for running SQL queries to save and retrieve Incident records from the database. Lastly, TMT
classes are developed for task management and, as such, define and govern activities like Manage-
Emergency Control and Report Emergency Control. This section also integrates communications between
different computer-based subsystems and manages connections with external systems. Common examples
of classes in this subsystem are Message and Connection. This classification was introduced by Coad and
Nicola to make it simpler to modify and reuse classes. Regardless of the application domain or
architectural style, such class types may be recognized in any OO system.

Evaluation of a Class Complexity Level

To determine a class's complexity level, the Class Point method considers how each class component
behaves. The method used to establish this difficulty level is where CP1 and CP2 diverge. In particular,
CP1 takes into consideration the total number of external methods and the total number of services
requested, whereas CP2 additionally makes use of the total number of characteristics.

The size of a class's interface may be estimated by counting the number of locally specified public

Manas Prasad Rout, Prof. Sabyasachi Pattnaik

www.ignited.in

19

International Journal of Information Technology and Management
Vol. 17, Issue No. 3, November-2022, ISSN 2249-4510

methods, or the Number of External Methods (NEM). The NSR quantifies the degree to which various
parts of the system are dependent on one another. Again, this only applies to a single class and is based on
how many services across classes you need. Both metrics may be found in the design documentation.
Indeed, activities that define any OO design process include identifying the classes with their
characteristics and methods and building interaction (or cooperation) diagrams to demonstrate which
external services are required for a class to complete the desired duties. For their part, Li and Henry
suggested a comparable metric to NSR. To quantify the degree to which one class depends on another, a
metric called Message Passing Coupling (MPC) was first proposed in. NSR counting is simpler than MPC,
therefore it may be done in the early stages of design and analysis.

As shown in Table 2, CP1 class complexity is determined by the sum of the NSR and NEM range values.
Thereafter, classes are given weights that reflect the complexity and nature of the data they contain.
Classes with more than nine NEM and an NSR greater than 2 are considered to be of high complexity.
Section 3.2 will explain the thinking behind Table 2.

One other factor in determining a class's complexity is the number of characteristics, which is factored into
the computation of CP2. Since NOA is an important metric, CP2 takes it into account as a separate
variable, which leads to Tables 3a, 3b, and 3c. Each table is indexed on NSR, NEM, and NOA, and is
associated with a certain NSR range.

Estimating the Total Unadjusted Class Point

When we know how complicated each class is, we can calculate the value of the Total Unadjusted Class
Points (TUCP). TUCP table completion is required for this purpose (see Table 4). For each row and
column in the table, the number of classes and their relative complexity are shown.

In this way, the TUCP is determined by adding together and weighting the four parts of the application.:

TUCPF = i: i: Wij X Tij,

i=1 j=1

where xij is the number of classes of components of type I (problem domain, human interaction, etc.) and
complexity level j (low, medium, or high), and win represents the weighting value for type I and complexity
level j.

Technical Complexity Factor Estimation

TCF is calculated by weighting 18 generic system attributes according to their impact on the application
(from 0 to 5).

Table 3: CP2 Evaluation of the Complexity Level of a Class

Manas Prasad Rout, Prof. Sabyasachi Pattnaik www.ignited.in 20

International Journal of Information Technology and Management
Vol. 17, Issue No. 3, November-2022, ISSN 2249-4510

-2 NSR 0 - 5 Nird 6 -9 NOA = 10 Nekd
0 -4 NEM Low Low Average
5-BNEM Law Average High
=9 NEM Averuge Hizh High
(a)
3-4 NSR ih =4 Wird 5 -8 NOA =9 NOA
0n-3INEM Low Laow Average
47T NEM Low Average High
=8 NEM Average High High
(b
=5 NSR -3 Mird 4-TNOA =8 NOA
-2 NEM Low Laoww Average
-6 NEM Low Average High
=T NEM Average High High

(=1

Table 4: valuating the TUCP

System
Component Type Description Complexity
Low | Average | High | Total
PDT Problem Domain | ...%3=... | L6 | LGP0
HIT Humen Interaction | ...%4=... | . *7= | WM2E
DMT Data Management | ..*5... | .*85. | Wtl3s,
™T Task Mamagement. | M=, | WM | Lt
Tice Total Unadjusted Class Point

as seen through the eyes of a designer. The estimated levels of effect are shown in Fig. 1's Processing
Complexity table. Total Degree of Influence (TDI) is calculated using the following formula, and it is
comprised of influence degrees connected to such broad system features.

TCF %% 0:55 p 80:01

TDIP:

By multiplying the sum of the unadjusted class points by the standard deviation, we may get the adjusted
class point (CP).

CP % TUCP

TCF:

In relation to the unadjusted CP count, the adjustment factor may have an effect of -45% (corresponding to
a TDI of 0) or +45% (equivalent to all degrees being set to 5). In the Appendix, you'll find a Class Points
computation sheet (Fig. 6). Importantly, the Technical Complexity Factor is calculated by considering not
only the factors taken into consideration by the FP approach, but also the following factors, which were
developed with object-oriented systems in mind: 15 - User Adaptation Prototyping, Rapid 17 User
Interaction Eighteen. Several Connections In light of this fact, we've decided to add the aforementioned
features to object-orientation.

Manas Prasad Rout, Prof. Sabyasachi Pattnaik www.ignited.in 21

International Journal of Information Technology and Management
Vol. 17, Issue No. 3, November-2022, ISSN 2249-4510

1D System Characteristic DI 1D | System Characteristic DI
Cl Data Communication C10 | Reusability

C2 Distributed Functions Cl11 | Insallation ease

3 Performance i C12 | Operational ease

C4 Heavily used configuration C13 | Multiple sites

C5 Transaction rate Cl14 | Facilitation of change

Ch ‘Online data entry C15 | User Adaptivity

7 End-user efficiency Cl16 | Rapid Prototyping

CB Online update C17 | Multivser Interactivity

(&) Complex processing C18 | Multiple Interfaces

Tni Total Degree of Influence

Figure 1: The Processing Complexity table

provides the best theoretical framework for designing useful GUIs (GUIs). It is generally accepted that
objects provide a more accurate representation of the Ul components and that direct manipulation of those
items is more easily supported [53]. Also, the ability to reuse software components and an OO user
interface go hand in hand with an OO-designed and -implemented programmed. The development of these
cutting-edge interfaces typically consumes the majority of software project resources due to the costs of
their design, implementation, debugging, and modification, despite the availability of powerful and useful
object-oriented tools for building interactive graphical applications. As a result, it is crucial to utilize a
reliable size prediction in order to properly plan the creation of the interactive software project. Table 5
provides some rules of thumb that may be used to gauge how much of an impact each of the added
variables really has.

The Class Point Definition

Professional Guidance This section explains how we arrived at the current definition of the Class Point
metrics. The opinions of a panel of 12 engineers versed in the creation of interactive OO applications
support this claim. Based on these observations, we may describe a class's complexity by looking at its
methods, characteristics, and interactions with other classes. This was further bolstered by an examination
of Bunge's ontology. A lot of focus in recent years has been on using this kind of ontology in the context of
object-orientation [21]. In reality, Bunge's qualities underpin the concept of object and are preoccupied
with the significance and delimitation of worldly representations. Concepts and objects, given names as
distinct entities, each with its own set of defining characteristics, make up these models. As a result, we
may define an object as a concrete, singular entity whose set of discrete qualities can be taken into account
as a whole. Assigned methods and instance variables represent an object's attributes in object-oriented
programming. The object and all of its characteristics are considered to be a representation of the
application domain. For our purposes, we have paid close heed to Bunge's definition of complexity as the
"numerosity of its composition." This idea maps into the complexity of an object class in an OO
framework, which may be thought of as the sum of all the characteristics that can be associated with it. For
their WMC metric, Chidambaram and Kemmerer took use of the existing notion of object complexity.
However, in their view, methods are what really add to a class's complexity, as outlined by Bunge's
definition. Because they felt characteristics were less time-consuming than techniques, they opted not to
include them in the complexity assessment. However, from our perspective, two classes with the same
number of methods and differing quantities of attributes cannot be equally time intensive. However, in the
CP1 measure, properties of a class are not taken into account for evaluating the complexity level since they

Manas Prasad Rout, Prof. Sabyasachi Pattnaik www.ignited.in 22

International Journal of Information Technology and Management
Vol. 17, Issue No. 3, November-2022, ISSN 2249-4510

may not be accessible in early design. When available, the number of characteristics is used in the
assessment of the complexity level in the CP2 measure.

Table 5: Guidelines to Determine the Influence Degree of the Introduced Factors

[Adaprivioe

quired for the given application
v mdjusy e form of cutpu in

response 0 @ change in nput. The sysem

gl Frossgping | @
3

b

| M airigrie
Fevterfirces L the position of seme widgets on the

1w s urr hanged

smmpligmiemt hack roansd

| Mlaadriener
Hevderacvivivy

Insights from a proposed taxonomy of adaptable systems have informed the adaptability criteria presented
in. The definition of the Technical Complexity Factor and the allocation of weights used in calculating the
Total Unadjusted Class Point value (TUCP) have been the subject of much debate among OO engineers.

The engineers are given a list of component types and asked to assess the relative importance of each of the
three degrees of complexity for each. We first provided the engineers with four sets of weight triplets to get
things rolling. Such baseline values were arrived at by giving various classes within each kind a weight
depending on the amount of effort data they provided. In order to begin with low, medium, and high
weights for each kind, we first averaged the given weights and then averaged all the weights below the
resultant number and all the weights above. The values were examined by engineers, who then compared
and debated their own revisions until an agreement was achieved on the weights shown in Table 4.

For the Technical Complexity Factor, we advocated for the inclusion of User Adaptivity, Rapid
Prototyping, and Multiple Interfaces in addition to the original 14 components of Function Point analysis
for interactive applications. Indeed, the user-centered approach that should be followed in the GUI design
process necessitates that a great deal of development work be committed to achieving a high degree of
usability of the interface in order to match user's wants and preferences. As a result, prototyping is
generally acknowledged as crucial for GUI development. Users should be able to test the prototype and
provide suggestions on how to improve the final product. Adding adaptability features for the user and
creating other views of the same programmed might also need more work. This may be necessary to
provide the user the freedom to choose the mode of interaction that is most appropriate for their specific
goals, background, and skill level. Engineers were asked for their feedback on the potential variables. They
validated the hypothesis that these elements may significantly alter the time required to create an interactive
application. Multiuser Interaction was also discovered throughout the interviews with the individuals. The
idea for such a suggestion came from the realization that, in order to allow users to concurrently interact
with a shared user interface, it is necessary to take into account a number of distinct factors during the
development of a multiuser interface. Such activities include multi-user event processing, window

Manas Prasad Rout, Prof. Sabyasachi Pattnaik www.ignited.in 23

International Journal of Information Technology and Management
Vol. 17, Issue No. 3, November-2022, ISSN 2249-4510

replication, process synchronization, and more.

CONCLUSIONS

Many software development effort/cost models use it as a metric for foretelling how much time and money

will be needed to complete a given piece of software. Although FPA can only be used to procedural

business systems, many academics believe that the FP method can be successfully applied to other types of

systems with little tweaking. Here, we go through the final methodology, the meta-methodology that

informed its development, and the methodology criteria that were used to validate it. The size estimates are

used in the planning, iteration, budgeting, investment analysis, pricing, and bidding processes. The Gamma

Group's definition of grouping for the items that make up the 23 design patterns presents a significant issue

for any software projects when attempting to estimate how much time and effort will be required to

complete the product. It has always been crucial to have reliable estimates at hand when making bids or

analyzing the financial viability of projects. The goal of the suggested strategy is to provide us a way to

improve our estimations as the project progresses and take use of newly available data.

References

10.

. TulinErgelebiAyyildiz et.al (2018) Size and Effort Estimation Based on Problem Domain Measures for

Object-Oriented Software

. Mr. Rushikesh S. Raut (2020) Research Paper on Object-Oriented Programming (OOP) e-ISSN: 2395-

0056 p-ISSN: 2395-0072

. Joseph Yoder et.al (2019) Current Challenges in Practical Object-Oriented Software Design

. GurusiddarajKonded et.al (2019) A Survey Paper on Object Oriented Software Engineering ISSN 2321

0613

. Osman Gazi Yildirim et.al (2021)An Action Research Study on the Development of Object-Oriented

Programming Course

. Amit Verma, Navdeep Kaur Gill, "Analysis of Watermarking Techniques", International Journal of

Computer Science and Technology (IJCST), Vol. 7, Issue 1, pp. 153-156, Jan- March 2016.

. Kaur, 1., kaur, n., ummat, a., kaur, j., &kaur, n. (2016). research paper on object-oriented software

engineering. international journal of computer science and technology, 36-38.

. Kalinga, E. A. (2018). Learning by doing in teaching and learning Object-Oriented Analysis and Design

approach to software development. Proceedings of the 12th International Multi-Conference on Society,
Cybernetics and Informatics (IMSCI 2018).

. Clarke, P. J., &Pierantonio, A. (2018) Teaching modeling: A software perspective. Computer Science

Education, 28(1), 1-4. doi:10.1080/08993408.2018.1486535

Attane, P., &Kanjug, 1. (2020, November). A Study of Learner's Mental Model and Motivation Using

Constructivism Online Learning Environment to Promote Programming in Rural School. In International

Manas Prasad Rout, Prof. Sabyasachi Pattnaik www.ignited.in

24

International Journal of Information Technology and Management
Vol. 17, Issue No. 3, November-2022, ISSN 2249-4510

11.

12.

13.

14.

15.

Conference on Innovative Technologies and Learning (pp. 361-366). Springer, Cham.

Avel, U. &Ersoy, H. (2018). Bilgisayar Programlama Derslerinde Ogrenme Motivasyonu Olgeginin
Tirk¢e Uyarlamasi: Gegerlilikve Giivenilirlik Calismasi. Journal of Higher Education &
Science/YiksekogretimveBilimDergisi, 8(1).

Balla, T., &Kirdly, S. (2020). A Discussion of Developing a Programming Education Portal. Central-
EuropeanJournal of New Technologies in Research, Education and Practice, 1-14

Zainal Abidin, N. H., Arsad, R., Muslim, N., & Masrom, S. (2020). Computer game application for
JAVA programming language learning. Mathematical Sciences and Informatics Journal (M1J), 1(1), 77-
89.

Zhu, J., Alderfer, K., Furgan, A., Nebolsky, J., Char, B., Smith, B., ... &Ontafion, S. (2019, August).
Programming in-game space: how to represent parallel programming concepts in an educational game. In
Proceedings of the 14th International Conference on the Foundations of Digital Games (pp. 1-10).

Wong, Y. S., Hayati, M. Y. M., & Tan, W. H. (2016, September). A propriety game-based learning
game as learning tool to learn object-oriented programming paradigm. In Joint International Conference
on Serious Games (pp. 42-54). Springer, Cham.

Manas Prasad Rout, Prof. Sabyasachi Pattnaik www.ignited.in

25

	Estimate the effort required to develop an Object-Oriented Software utilizing class point approach
	INTRODUCTION
	LITERATURE REVIEW
	RESEARCH AND METHODOLOGY
	DATA ANALYSIS
	CONCLUSIONS
	References

