An Effective Treatment Technique for Professional Athletes with Lower Back Pain

Dr. Pardeep Kundu*

Assistant Professor in Physical Education, Government College, Barota, Gohana

Abstract – Lower back pain (LBP) is a common complaint of a significant number of the athletes. Both young and elite athletes consult the doctors with complaints about LBP. One of the main causes of LBP is spondylolysis. The main methods of the treatment of this disease are: spondylosis and surrogation of the lumbar disc. In the medical reports there are positive clinical results using both methods. However, the scientific disputes continue over the comparative evaluation of the effectiveness of the methods of spondylolysis and surrogation of the lumbar disc. The researcher's analyzed the results of the surgical treatment of the 20 professional athletes. In the period from 2015 to 2016 an operation was performed to these athletes to replace the degenerative intervertebral disk disease at the level of L5-S1. A total resection of the intervertebral disc at the level of the lumbar spine with decompression of the dural sac and the subsequent installation of the functional endo-prosthesis - M6-L Artificial Lumbar Disc was performed to the first group of athletes (n = 10). The transformational lumbar interbody fusion (TLIF) and trans pedicle screws after removing the discal hernia L5-S1 was performed to the second group of athletes (n = 10). The best clinical result was achieved in the first group of the athletes. Only 8 out of 10 athletes with surrogation of the lumbar disc were able to return to their previous level of sporting achievements for two years after the operation. X-ray results showed the safety of endo-prosthesis functions throughout the study period. The six athletes from the second group completed their sports career within 2 years after the spondylolysis. The cause was the increase in degenerative processes at the adjacent spine level and an increase in LBP.

Keywords – The professional sports; LBP; discal hernia; spondylolysis; surrogation of the lumbar disc; Endo-prosthesis replacement of the disc; the return to the sport.

INTRODUCTION

It is generally agreed today that during the life the most people experience lower back pain (LBP). This pain becomes chronic with age and relapse. This is dictated by many different factors which are important for the development of the chronic low back pain: disc hernia, spondylolysis, degenerative disc disease, etc. According to the doctors the dominant cause of the development of the pain in the lumbosacral spine is the degeneration of intervertebral discs. This disease leads to disability; it lowers the quality of life and reduces its ability to work. However, these negative consequences have a significant socio-economic burden on the patients and society as a whole which leads to a significant health system costs.

It is known that back pain is quite common not only between the physically inactive population and also the athletes have it too but the mechanisms of their presence have not been sufficiently studied. Besides, the athletes spend most of their time in training and competition which leads to a rather high level of mechanical stress and stress on the spine of the athletes (Dunn, Proctor, & Day, 2006). The level of stress depends on the duration and intensity of training, sports discipline and the number of competitions during the year (Mortazavi, Zebardast & Mirzashahi, 2015). At the same time there was no apparent dependence of the presence of the lower back pain with the specificity of a particular sport. The lower back pain is guite common among the athletes representing different kinds of sports: martial arts, sports and gymnastics etc. (Osipov, et al., 2017, Osipov, Iermakov, et al., 2017; Bolotin & Bakayev, 2016). The elite athletes have the presence and spread of back pain which has been investigated by many scientists. But in view of the methodological heterogeneity of the studies the rates of the back pain which the athletes have can vary quite significantly including a description of the exact area of the pain, its duration and intensity (Trompeter, Fett, & Platen, 2017).

It is known that the back pain is a fairly common complaint of a large number both young (Patel, & Kinsella, 2017, Malkogeorgos, et al., 2011) and elite athletes (Lariosa, et al., 2017; De Luigi, 2014). It has

been established that about 30% of the athletes have complaints about lower back pain throughout the sports career (Cherepanov, & Nazaryan, 2013; Dreisinger, & Nelson, 1996). This symptom is one of the most common reasons for missing trainings among the elite athletes. It was revealed that 75% of elite athletes have complaints about the back pain (Ong, Anderson, & Roche, 2003). The most common cause of the athletes' complaints about low back pain degenerative disc disease, disc hernia or is spondylolysis (Burgmeier, & Hsu, 2014).

It is generally agreed that there are several methods of conservative treatment of LBP athletes, disc hernia and spondylolysis involving the return of the patients to their active sports activities. However, the experts argue that there is no agreement on the choice of the optimal strategy for treating lumbar disc herniation of the athletes. Currently, there is a lack of controlled studies of various methods of conservative and surgical treatment of the athletes with a diagnosis of a hernia of the lumbar disc. The experts argue that the limited data on the effectiveness of surgical treatment of spondylolysis in comparison with the conservative treatment do not allow making unequivocal conclusions about the advantages of this or that method. At the same time the doctors do not have sufficient evidence of the effectiveness of the use of drugs in the treatment of spondylolysis and lumbar disc herniation. The most of the literature contains data on the return of the athletes to the sports after a spinal injury. Accurate data on the return to a sports career after surgery on the spine is presented significantly less (Christman, & Li, 2016). We can say about the criteria and limits that indicate the need for conservative or surgical treatment of LBP and herniated athletes are not very clear and the physicians need to evaluate each athlete individually.

The main attention of many doctors is now paid to the search for claim that the replacement of the lumbar disc (TDR) is now a well-studied and tested technology. Noticeable this technology provides better clinical results than disk merging operations or the establishment of protective structures on adjacent disks (Zigler, & Garcia, 2015). The specialists recommend lumbar TDR for the young patients who do not suffer from the significant joint deformities or osteoporosis. At the same time, there are studies suggesting that no specific clinical differences between disc replacement operations and spinal fusion techniques have been identified at this time. One should note here that the new scientific studies with a long observation period and a sufficient number of studies are needed to evaluate the safety and quality of TDR.

The scientists note that despite the increasing popularity of lumbar disc replacement of the athletes there is a lack of research on the potential risks after such an operation. Along with various mechanical problems the level of stability of the implant with respect to its bearing capacity is also unknown during the significant loads during the sports activities. Thus, at present, a serious scientific discussion continues on the effectiveness of various treatments for LBP caused by spondylolysis or degenerative lumbar disc disease which the professional athletes have. Thus the aim of the authors' research was to study the effectiveness of TDR with the installation of the interbody endoprosthesis - M6-L Artificial Lumbar Disc in comparison with the method of spondylodesis of the professional athletes.

MATERIAL & METHODS

It should be taken into account that the investigations were carried out on the basis of the neurosurgical department of the sun flag hospital (Rohtak) in the period from 2014 to 2017. The contingent of the researched is 20 professional athletes who underwent surgery for the degenerative disc hernia at the level of L5- S1 during 2015-2016. The age of the researched is from 19 to 32 years. The athletes represented various kinds of sports: powerlifting, hockey, football, wrestling and boxing. Besides, all athletes address to the clinic complaining of continuing and increasing pain in the back and legs after a course of complex conservative therapy lasting from 2 to 6 weeks. This therapy included the use of anti-inflammatory drugs, muscle relaxants, physiotherapy, manual therapy and a course of paravertebral blockades. Moreover, during the examination all athletes were diagnosed with dorsopathy with lumbar-ischiadicus and painful radicular syndrome on the background of the disc herniation and a decrease in the height of the L5-S1 disc.

What is more that the athletes were divided into two groups: TDR (n = 10) and Fusion (n = 10) performed a total resection of the intervertebral disc at the level of the lumbar spine with decompression of the dural sac and the subsequent installation of the functional endoprosthesis - M6-L Artificial Lumbar Disc was performed to the first group of the athletes (TDR). The transforaminal lumbar interbody fusion (TLIF) and transpedicular screws after removing the discal hernia L5-S1 was performed to the second group of the athletes (n = 10) (Fusion). The assessment of the lower back pain and lower limbs of the patients was carried out using the Visual Analogue Scale (VAS). The assessment of the level of quality of life of the patients was conducted using the Oswestry Disability Index (ODI). According to many experts, the Oswestry Disability Index is a fairly reliable and valid tool for assessing the degree of disability of the patients.

The following instrumental studies were also performed: magnetic resonance tomography (MRI) of the lumbar spine and lumbar spondylography with the functional tests.

The following was estimated: the height of the affected disc, sagittal transmission and angulation of the operated segment. The experts often say that the state of the intervertebral disc and facet joints at the operated and adjacent levels were assessed using the classification of A. Fujiwara (Fujiwara, et al., 2000).

RESULTS

In the first group of the athletes the pain of the radicular syndrome decreased for the 9 patients a month after the total resection of the intervertebral disc and the installation of the end prosthesis. A decrease in the lumbar syndrome was also found for the 9 athletes of the first group. A year later, a decrease in these syndromes was found for the 8 athletes of the first group. In two years of observation these indicators have not changed. The assessment of the level of the quality of life (ODI) conducted according to the Oswestry Disability Index revealed a significant improvement of the quality of life of the athletes of the first group during the first week after the operation. On average, the level of quality of life improved from 41.7 \pm 4.2 to 8.1 \pm 1.0 points according to ODI. A month after the operation the score improved to 3.3 ± 1.1 points for ODI. In the future, for two years, the indicators of assessing the quality of life of the athletes of the first group have not changed significantly.

For two years after the operation the execution of control MRI examinations of the lumbosacral spine showed that 2 athletes from the first group showed an increase in degenerative processes at an adjacent level of the spinal column. In particular, the growth of facet joint degeneration was detected from 2 to 4 points according to the classification of A. Fujiwara (Fujiwara, et al., 2000). The increased physical exertion caused the increase of the pain syndrome of these athletes that did not allow them to return to the active training sessions. Thus, two years after the operation of installing a functional endoprosthesis in the lumbar spine 8 out of 10 athletes were able to return to the continuation of their sports career.

The data of MRI examinations of the lumbosacral spine of the first group of athletes before and after surgery are shown on Pictures 1 and 2. Picture 1 shows the characteristic MRI of the athlete before the operation. Herniated disc L5-S1 was detected on the background of a decrease of the disc height by 25%. Picture 2 shows the typical for the most athletes of the first group of MRI after the operation. The hernia of the disk is completely removed and the compression of the dural sac and rootlets is not revealed. There is a good visualization despite the implant installed to the athlete. The control functional radiography of the lumbosacral spine performed at the clinic in 12 months and 24 months after the operation of the

operated segment of the athletes was not detected. Sagittal translation and angulation in the operated segment was limited by the technical characteristics of the endoprosthesis and was about 4.80 ± 1.60 .

Pic-1

Perhaps, in the second group of the athletes a month after the implementation of the spondylodesis the pain of the radicular syndrome decreased between 6 people. The reduction of lumbar syndrome was recorded between 5 athletes. Three athletes returned to the active training but they had to stop the training sessions because of the growing pain symptom in the lower back. Thus, a year after the operation the pain syndrome was absent between 6 patients and lumbalgic between 4 athletes. MRI-examination of the lumbosacral spine of the athletes of the second group revealed an increase in degenerative processes at the adjacent spine level of the 6 athletes. These processes were the clinical cause of lumblagic syndrome. Meanwhile, 2 years after the

spondylodesis one athlete needed a re-surgery and the rest of the patients in this group underwent a conservative course of the treatment. By the way the level of quality of life of the athletes of the second group averaged a week after the operation improved from 47.3 ± 3.1 to 16.3 ± 1.5 points according to the Oswestry Disability Index. It should be noted that a month later, the assessment (ODI) against the background of the therapy was between 13.1 ± 2.0 points. A year after the spondylodesis the level of quality of life activity averaged between 18 ± 38 points and in 2 years was 23.3 ± 41 points.

DISCUSSION

It is a well-known fact that the physicians believe that back pain is a common problem for the professional athletes. The most common cause of the lower back pain (LBP) is spondylosis (Daniels, et al., 2011). Spondylosis is the cause of the appearance of radicular syndrome or radiculopathy complicated by the presence of a hernia of the lumbar disc. Besides, the scientific literature supports both conservative treatment and surgical intervention in the treatment of radiculopathy caused by a hernia of the lumbar disc (Schoenfeld, & Weiner, 2010). At the same time it is noted that only very few methods of the treatment are really efficient (Petering, & Webb, 2011). Moreover, the clinical studies show that many athletes after the course of treatment cannot return to the previous level of the sports activity (Puentedura, & Louw, 2012). In particular it was revealed that conservative methods of treating athletes with symptomatic hernia of the lumbar disc have only a short-term result (Iwamoto, Sato, Takeda, et al., 2011).

The experts say that long conservative treatment should be avoided which can have a negative impact on the success of surgical treatment of the patients. Meanwhile, the relative indicators for surgical treatment can be: increased pain in the back and legs and the inability of the competitive activity among the athletes (Dunn, Proctor, & Day, 2006). The low back pain adversely affects the flexibility and strength of the athletes which prevents them from returning to their previous sporting level (Ashmen, Swanik, & Lephart, 1996). Furthermore, in the medical literature there is evidence that the surgical treatment of motor weakness caused by a hernia of the lumbar disc facilitates the rapid restoration of motor functions (Choi, et al., 2013).

Thus, for the professional athletes whose conservative treatment has not been successful the surgical treatment remains the only chance of reducing back pain and returning to the active sports (Scheepers, Streak, & Munn, 2015). What is more there is evidence that surgical treatment of lumbar spine states gives the excellent results to the athletes. The replacement of a herniated lumbar disc allows the athletes to continue their careers at the preoperative levels of achievement (Cook, & Hsu,

2016). At the same time, there are studies that indicate the difficulty of returning to an active sports career after the treatment of spondylolysis (Li, & Hresko, 2012). It should be noted that the importance of rehabilitation after the end of surgical or conservative treatment of LBP. From the one hand the doctors say that many rehabilitation prescriptions cannot cope with the violations of postural and motor control which are the characteristic for the sports activities which can impede the athletes' full-fledged sports activity after the treatment (VanGelder, Hoogenboom, & Vaughn, 2013). From the other hand some experts recommend the hydrotherapy to the athletes who undergo surgery to remove a disc herniation as rehabilitation. However, there is a scientific discussion regarding to the search of the most effective form of rehabilitation for the athletes after the surgical treatment. In particular, there are different opinions in determining the time at which rehabilitation activities begin (Wajchemberg, et al., 2002).

It should be mentioned that the experts argue that with a constant increase in training loads during the sports there are significant concerns about the stability of the implant and new fairly lengthy studies with a large number of patients are needed (Siepe, Wiechert, Khattab, et al., 2007). However, carrying out such studies is associated with some difficulties. So it should be noted that the development of prosthetics of the lumbar disc between the athletes is hampered by the relatively high cost of such operations. On average, in the Indian Federation, the operation to replace the disc is estimated at 350000-400000 Rs. and the spondylodesis is estimated about 140000-200000 Rs. Thus, the most athletes choose spondylodesis only because of a lack of financial resources and not because of the high efficiency of such an operation. Thus, there are objective difficulties with qualitative observation of a sufficient number of patients with TDR.

CONCLUSIONS

Perhaps we should also point out the fact that the studies show that resection of the intervertebral disc at the lumbar level with the implantation of a functional endoprosthesis is a fairly safe and productive method of treating the professional athletes with problems with herniated discs and the presence of radiculopathy. Moreover, a positive clinical result in the form of regression of painful radicular and lumbar syndrome and the possibility of continuing a sports career was achieved between 8 out of 10 first-group athletes (TDR) after removing their disc herniation with subsequent prosthetics. Furthermore, X-ray results of the authors' studies showed the safety of the endoprosthesis functions throughout the research period. The preservation of the functions of the endoprosthesis allows avoiding the growth of degenerative processes at the adjacent level of the spinal column and the appearance of the

pain syndromes. The authors hope that these studies will make a necessary contribution to solving the problem of finding effective treatment for the athletes with LBP and hernia lumbar disc.

REFERENCES

- Ashmen, K., Swanik, C., & Lephart, S. (1996). Strength and flexibility characteristics of athletes with chronic low-back pain. *Journal* of Sport Rehabilitation, 5(4). pp. 275-286. https://doi.org/10.1123/jsr.5.4.275
- Bolotin, A., & Bakayev, V. (2016). Efficacy of using isometric exercises to prevent basketball injuries. *Journal of Physical Education and Sport,* 4. pp. 1177-1185. DOI:10.7752/jpes.2016.04188
- Burgmeier, R., & Hsu, W. (2014). Spine surgery in athletes with low back pain-considerations for management and treatment. *Asian Journal of Sports Medicine, 5*(4). e24284. DOI:10.5812/asjsm.24284
- Cherepanov, E., & Nazaryan, S. (2013). Low back pain in elite athletes. *Exercise Therapy and Sports Medicine, 8*(116). 42-48. [In Russian]
- Choi, H., et al. (2013). Surgical versus conservative treatment for lumbar disc herniation with motor weakness. *Journal of Korean Neurosurgical Society, 54*(3). pp. 183-188. DOI:10.3340/jkns.2013.54.3.183
- Christman, T., & Li, Y. (2016). Pediatric return to sports after spinal surgery. *Sports Health, 8*(4). 331-335. https://doi.org/10.1177/1941738116634685
- Cook, R., & Hsu, W. (2016). Return to play after lumbar spine surgery. *Clinics in Sports Medicine, 35*(4). pp. 609-619. DOI:10.1016/j.csm.2016.05.006
- Daniels, J., et al. (2011). Evaluation of low back pain in athletes. *Sports Health, 3*(4). 336-345. DOI:10.1177/1941738111410861
- Dreisinger, T., & Nelson, B. (1996). Management of back pain in athletes. *Sports Medicine, 21*(4). pp. 313-320.
- Dunn, I., Proctor, M., & Day, A. (2006). Lumbar spine injuries in athletes. *Neurosurgical Focus*, 21(4). pp. 1-5. DOI:10.3171/foc.2006.21.4.5
- Fujiwara, A., et al. (2000). The relationship between disc degeneration, facet joint osteoarthritis, and stability of the degenerative lumbar spine. *Journal of Spinal Disorders, 13*(5). pp. 444-450.

- Lariosa, C., et al. (2017). Survey of judo injuries in physical education classes: a retrospective analysis. *Journal of Physical Education and Sport,* 3. pp. 2034-2042. DOI:10.7752/jpes.2017.03205
- Lee, Yu., Zotti, M., & Osti, O. (2016). Operative management of lumbar degenerative disc disease. *Asian Spine Journal, 10*(4). pp. 801-819. DOI:10.4184/asj.2016.10.4.801
- Li, Y., & Hresko, M. (2012). Lumbar spine surgery in athletes: outcomes and return-to-play criteria. *Clinics in Sports Medicine, 31*(3). pp. 487-498. DOI:10.1016/j.csm.2012.03.006
- Malkogeorgos, A., et al. (2011). Common dance related musculoskeletal injuries. *Journal of Physical Education and Sport, 3.* pp. 259-266.
- Parker, S., et al. (2014). Two-year comprehensive medical management of degenerative lumbar spine disease (lumbar spondylolisthesis, stenosis, or disc herniation): a value analysis of cost, pain, disability, and quality of life: clinical article. *Journal of Neurosurgery. Spine,* 21(2). pp. 143-149. DOI:10.3171/2014.3.SPINE1320
- Salzmann, S., et al. (2017). Lumbar disc replacement surgery—successes and obstacles to widespread adoption. *Current Reviews in Musculoskeletal Medicine*, *10*(2). pp. 153-159. DOI:10.1007/s12178-017-9397-4
- Schoenfeld, A., & Weiner, B. (2010). Treatment of lumbar disc herniation: Evidence-based practice. *International Journal of General Medicine*, 3. pp. 209-214.

Corresponding Author

Dr. Pardeep Kundu*

Assistant Professor in Physical Education, Government College, Barota, Gohana