

Consequence of Boxing Workouts upon Physical and Biochemical Reactions of Boxers: A Case Study of Combat Sports

Bhagyajyothi K. S.

Lecturer, Chatrapati Sashu Ji Maharaj University,
Kanpur

ABSTRACT

The present study was directed to study the morphological, physiological and biochemical attributes of Indian National boxers and to evaluate the cardiovascular adjustment to reviewed exercise and real boxing round. Two separate studies were led. In the first study [$n = 60$, (lesser boxers underneath 19 yrs, $n = 30$), (senior boxers-20-25 yrs, $n = 30$)] diverse morphological, physiological and biochemical parameters were measured. In the second study ($N = 21$, Light Weight class <54 kg, $n = 7$; Medium weight classification <64 kg, $n = 7$ and Medium substantial weight classification <75 kg, $n = 7$) cardiovascular reactions were contemplated throughout evaluated exercise convention and genuine boxing sessions. Outcomes demonstrated an altogether higher ($p < 0.05$) stature, figure mass, LBM, muscle to fat ratio ratios and quality of back and grasp in senior boxers contrasted with youngsters. Besides, the senior boxers had mesomorphic form adaptation whereas the youngsters' had ectomorphic figure compliance. Altogether lower ($p < 0.05$) high-impact limit and anaerobic force were noted in lesser boxers contrasted with seniors.

Further, fundamentally higher ($p < 0.05$) maximal heart rates and recuperation heart rates were watched in the seniors as contrasted with the youngsters. Fundamentally higher greatest heart rates were noted throughout genuine boxing contrasted with reviewed exercise. Blood lactate fixation was found to build with the increment of workload throughout both reviewed exercise and real boxing round. The senior boxers indicated a essentially hoisted ($p < 0.05$)

levels of hemoglobin, blood urea, uric corrosive and top lactate as thought about to lesser boxers. In the senior boxers essentially lower levels of aggregate cholesterol, triglyceride and LDLC were watched as contrasted with lesser boxers. No noteworthy change has been noted in HDLC between the gatherings. The age and level of training in boxing has noteworthy impact on Aerobic, anaerobic segment. The investigation of physiological reactions throughout reviewed exercise testing may be accommodating to watch the cardiovascular adjustment in boxers.

Boxing is a combat sport described by High power developments throughout restricted rounds, with short breaks are lacking for full recuperation. Physiologists ought to be aware of the physiological and biochemical changes that may cause by boxing exercises. The point of the study is to evaluate the impacts of boxing exercises on physiological and biochemical reactions of Egyptian first class boxers. Seventeen Egyptian upper class male boxers (age run 18-23 years) enrolled in the Egyptian boxing organization, volunteered to take an interest in the study.

Physiological and biochemical measures were acquired at standard and at the end of boxing training programme. Scholar's (T) test was accompanied out to analyze preand post-test qualities. Information noted that boxing exercises were connected with noteworthy abatements ($p < 0.05$) in resting heart rate (Hrrest), recuperation heart rate following 1 moment (Rhr1st), recuperation heart rate following 2 minutes (Rhr2nd), recuperation heart rate following 3 minutes (Rhr3rd), respiratory trade degree (RER) values, and blood lactate (BL) fixation, while they joined with huge increments ($p < 0.05$) in crest heart rate (Hrpeak), relative and outright $Vo_{2\text{max}}$, Creatine Kinase (CK) and Lactate Dehydrogenase (LDH) values. The creators' facts show respectable physiological and biochemical changes altogether influenced by confining exercises first class boxers. Looking at connections associated with the impacts of training on physiological and biochemical perspectives include new sizes that can help in evaluating, administering and creating sports training programmes.

INTRODUCTION

Boxing is a discontinuous sport portrayed by brief time, high power blasts of action. It requires noteworthy anaerobic fitness, and works inside a generally created vigorous framework. Boxing is evaluated to be 70-80% anaerobic and 20-30% vigorous (Ghosh et al.,

1995). Boxing's work and rest proportion is roughly 3:1. The standard of the beginner boxing has been transformed from 3×3 round to 2×5 adjust in 1990 big showdown rivalry, and at that point 4×2 rounds with one moment of rest stop in between every session. The way of boxing obliges competitors to support power at a high rate of maximal oxygen uptake (Vo_{2max}) (regularly above lactate edge, handling large amounts of blood lactate prompting untimely weakness). The essential point of molding for boxing is to defer the onset of exhaustion by expanding tolerance of lactic corrosive manufacture up, expanding the ATP and CP, to progress productivity of oxygen use, and to enhance recuperation between extraordinary blasts of action (Guidettiet al., 2002)

Vitality from high-impact and anaerobic digestion system depends on the power and length of the movement (Kraemer et al., 2011). Boxing is portrayed by High power developments throughout rounds with short breaks are insufficient for full recuperation. Subsequently, this effects in the preparation of lactic corrosive, and hoisted blood lactate (Khanna and Manna, 2006). Boxing rounds put a substantial load on boxers who have rising heart rate and blood lactate fixation through sessions (Ghosh et al., 1995). At the same time, physiologists and competitors ought to be more aware of the biochemical changes that may create by drawn out exercise (Warburton et al., 2002).

Subsequently, the best strategy to evaluate training adjustments and to avert overtraining is looking at the chose biochemical markers (Urhausen and Kindermann, 2002; Gleeson, 2002; Umeda et al., 2008). Hence, the coach ought to be acquainted with the physiological viewpoints identified with training. A little number of studies have been educated in the written works concerning the physiological requests of boxing (Khanna and Manna, 2006). The physiological necessities of boxing have been researched on record of heart rate, maximal oxygen uptake (Vo_{2max}), blood lactate (BL) (Kravitz et al., 2003; Ghosh, 2010; Ghosh et al., 1991).

Prior studies on Egyptian boxers keep tabs on engine capability, vigorous and anaerobic limits of Egyptian Boxers. Uncommon studies researched the biochemical reactions of Egyptian boxers (Shehata, 2010) have been led. To the creators' data, this is the first study to break down both physiological and biochemical reactions in Egyptian boxers. Subsequently, the reason for this study was to explore physiological and biochemical reactions of Egyptian first class boxers consequent to boxing exercise

STRATEGIES

For the present study, a total of 60 male (age range 15-25 yr) boxers of Indian National Camp participated in the study. Participants were divided into 2 groups (i) junior boxers-below 19 yrs (JB, n = 30), (ii) senior boxers-20 yrs and above (SB, n = 30). Different morphological, physiological and biochemical parameters were measured in each group.

WAY OF MEASURING ASSOCIATED WITH MORPHOLOGICAL PARAMETERS

Body mass was measured with the accurately calibrated electronic scale (Seca Alpha 770, UK) to the nearest 0.1 kg and stature with a stadiometer (Seca 220, UK) recorded to the nearest 0.1 cm. Body density was estimated from the sum of the four skin fold sites (Durnin and Womersley, 1947), and percentage body fat was calculated by using equation of (Siri, 1956). Somatotype body configuration was done computed following Heath and Carter's method. Grip and back strength were measured by dynamometers (India Medico Instruments, India) (Jonson and Nelson, 1996).

Participants

Participants were informed about the possible hazards of the study. Each test was scheduled at a similar time of day (\pm 1 hr) in order to minimize the effect of diurnal fluctuation. Participants were advised not to engage in strenuous activities two days before an exercise test and not to exercise on the day of the test. Individuals were requested to maintain their normal diet. All the tests were undertaken following the guidelines of American College of Cardiology (ACC, 1986).

TEACHING SYSTEM

The training programme was planned by the coach of Mansoura sports club. It comprised 8 weeks of total 32 sessions (\approx 53 hours). Researchers divided the training programme into three phases. 1st phase was aimed to overall development of physical fitness components (e.g. strength, mobility, endurance) as well as developing fundamental motor skills; 2nd phase intended to develop specific physical fitness components and enhance advanced technical skills alongside competition experience; 3rd phase was proposed to adjust technical performance, train for the main competition in addition to emphasizing tactical and competition experience.

Intensity of the training programme was calculated by means of Karvonen's formulae [Target Heart Rate = $((\text{HRPeak} - \text{HRrest}) \times \% \text{Intensity}) + \text{HRrest}$] (Brown et al., 2006); HRPeak was estimated as 220 minus participant's age. HRrest was acquired for all participants at pre-test by asking them to recline on their own for 5 min and wearing a pulse monitor (Polar Sport-tester TM PE 3000; Polar Electro, Finland), in calm area with no distractions. HRrest was subsequently recorded and used to estimate target heart rate intensities. Workouts consist of [core conditioning - running - speed work - strength training - shadow boxing - skipping rope - boxing cardio exercises - working on heavy, double end and speed bags -boxing combinations - defensive, offensive and counter attack skills - free sparring].

Variables \ phases	1 st phase (Basic)	2 nd phase (Specific)	3 rd phase (Taper)
Weeks	2	3	3
Workouts per week	4	4	4
Resting days per week	3	3	3
Workout duration per min	110	100	90
Intensity	70 %	80 %	90 %

Table : Boxing training programme phases and variables during the training period.

FACTS INVESTIGATION

Data were collected from participants and then were collated and inserted in the statistical software package, SPSS-16 (SPSS Inc, Chicago, Il). Descriptive statistics were determined for all variables. Values are presented as Mean \pm Standard deviation. Student's (T) test was followed out to examine pre- and post-test results. For all statistics, the level of significance was set at $P < 0.05$.

Data were presented as mean and standard deviation (\pm SD). Two-tail t-test was used to determine the significant differences of means in each parameter between the junior and senior boxing groups. ANOVA followed by multiple two-tail t-tests with Bonferroni modification was employed to find out the significant difference between the weights categories. Differences were considered significant when $p < 0.05$. (Das and Das, 1998). Accordingly, a statistical software package (SPSS-10) was used.

The exercise test was divided into three test protocols. First and second protocols were carried out in the laboratory, whereas the third protocol was performed during the practice session.

First protocol: The participant was asked to run on the treadmill (Jaeger 500, Germany) at a speed of $6 \text{ km}\cdot\text{h}^{-1}$ at 0% gradient for 2 min thereafter, the workload was increased by $2 \text{ km}\cdot\text{h}^{-1}$ for every 2 min.

Until volitional exhaustion. Heart rate responses during rest, exercise and recovery were noted every 5 sec using a heart rate monitor (Polar, Finland). Blood sample was taken 2 min after the cessation of exercise to evaluate the peak lactate level. Second protocol: This comprised a warm up for 2 min at $8 \text{ km}\cdot\text{h}^{-1}$ speed followed by a graded exercise protocol was performed on the treadmill (Jaeger 500, Germany) to determine the heart rate responses to graded exercise so as to find out the sub-maximal responses of cardiovascular system. The test protocols were subdivided into 3 grades: (i) grade I at $12 \text{ km}\cdot\text{h}^{-1}$ speed and 2% inclination; (ii) grade II at $14 \text{ km}\cdot\text{h}^{-1}$ speed and 4% inclination; grade III- at $16 \text{ km}\cdot\text{h}^{-1}$ speed and 6% inclination respectively. In every grade, 2 min of exercise was performed following 1 min rest, hence similar to actual competition. Heart rate was measured after warm up, at the end of 2 min graded exercise and during 1 min rest pause. Blood samples were taken during the rest period to determine the blood lactate concentration.

PHYSIOLOGY

Physiology is defined by dictionaries as 'the science of the normal functions and phenomena of living things'. Historically, the subsequent meaning of 'physiology' is well illustrated by the way in which the word is used in the two following quotations. The first is from 1704 (J. Harris, *Lexicon Technica*): 'Physiology, is by some also accounted a Part of Physic' (i.e. Medicine), 'that teaches the Constitution of the Body so far as it is sound, or in its Natural State; and Endeavours to find Reasons for its Functions and Operations, by the Help of Anatomy and Natural Philosophy'. The second (a definition of Charles Darwin's colleague T. H. Huxley), 150 years later, is virtually identical to current usage: 'whereas that part of biological science which deals with form and structure is called Morphology; that which concerns itself with function is Physiology'.

Physical variables may be defined as those variables which are performance oriented and dependent upon functioning of different systems of the body in integrated manner (Toor 1996). Clarke (1978) has thus exhorted that physical fitness is a vital biological need. The neglect of which handicaps the total effectiveness of the individual. Physical fitness is not only

essential for total effectiveness of all individuals but also of paramount importance to sportsmen.

RESULTS

Results of the present study showed a significantly higher stature, body mass, LBM and body fat in the senior boxers as compared to junior boxers. Significantly higher endomorphy and mesomorphy values were noted in senior players as compared to juniors. Moreover, a significantly higher ectomorphy body conformation was noted in junior boxers as compared to senior boxers. In addition, significantly ($p < 0.001$) higher strength of back and grips were noted in senior players compared to juniors. The anaerobic power and aerobic capacity showed significantly higher values in senior boxers as compared to junior boxers. Further, significantly higher heart rates were noted during maximal exercise and recovery in senior boxers compared to junior boxers. Were the intervention boxers alike in physiological parameters at baseline and after 8 weeks boxing exercises?

Statistical significant differences in all of the physiological parameters at $p < 0.05$ between pre and post values. Boxers' mean HRrest decreased (from 73.1 to 67.3 beats/min), but, in contrast, boxers' mean HR Peak increased (from 197 to 204 beats/min). During the same period, Boxers' mean RHR1st, RHR2nd and RHR3rd dropped ($p < 0.05$) (from 171, 146.5 and 139 beats/min to 166.6, 141 and 128 beats/min respectively). Simultaneously, relative and absolute VO2Max increased significantly ($p < 0.05$) (from 58.2 to 64.6 ml/kg/min; from 4.65 to 5.23 frmin respectively).

CONCLUSION

Taking everything into account, the age and level of training in Boxing has noteworthy impact on Aerobic, anaerobic part. A high escalated and long length of time interim training to create the requirements to be fused in the training calendar to create both the aerobic and anaerobic parts of the boxers to take care of the demand of the diversion. In the meantime biochemical parameters including hemoglobin, urea, uric corrosive and lipid profiles additionally ought to be taken into thought for training of boxers. The investigation of physiological reactions throughout reviewed exercise testing may be accommodating to watch the cardiovascular adjustment in boxers. The reactions of heart rate and lactate concentrated

on throughout the genuine session can give a better knowledge about the adjustment of the boxers as contrasted with concentrating on of reactions in the lab conditions.

Within the research sample and the available possibilities, we can conclude that boxing exercises have positive impact on the physiological and biochemical variables under research. This impact may be the result of participating in a boxing training programme regularly, which declares that boxing exercises induce changes in various physiological and biochemical parameters. In view of the fact that physiological and biochemical statistics on Egyptian boxers are insufficient, the recent study might supply useful data help to promote boxing training. The study of the physiological demands through sport activity helps in designing training programmes on a biological foundation. Physiological and biochemical variables are considerable indicators of changes in body systems as a result of training. In conclusion, detecting relationships associated with the effects of training on physiological and biochemical aspects adding new dimensions that can assist in evaluating, directing and developing athletic training programmes.

REFERENCES

- Abernethy, P. J., Thayer, R., & Taylor, A. W. (1990). Acute and chronic responses of skeletal muscle to endurance and sprint exercise. A review. *Sports Medicine* 10(6), 365-389.
- AIBA, International Boxing Association. (2010). Technical & Competition Rules. 2010, Available from <http://www.aiba.org/default.aspx?pId=183#>.
- Astrand, P, & Rodahl, K.(1986).Textbook of work physiology. New York, United States: McGraw-Hill.
- Aubert, A. E., Seps, B., & Beckers, F. (2003). Heart rate variability in athletes. *Sports Medicine*, 33(12), 889.
- Beneke, R., Beyer, T., Jachner, C., Erasmus, J., & Hutler, M. (2004). Energetics of karate kumite. *European journal of applied physiology*, 92(4-5), 518-523.
- Bianco, M., Vaiano, A.S., Colella, F., Coccimiglio, F., Moscetti, M., Palmieri, V., Focosi, F., Zeppilli, P. and Vinger, P. F. (2005) Ocular complications of boxing. *British Journal of Sports Medicine* 39, 70-74.

- Brooks, G. A. (2000). Intra- and extra-cellular lactate shuttles. Medicine and science in sports and exercise, 32(4), 790-799.
- Brown, S. P., Miller, W. C., & Eason, J. M. (2006). Exercise physiology : basis of human movement in health and disease. Philadelphia, Pa. ; London: Lippincott Williams & Wilkins.
- Cardoso Saldana, G.C., Hernandez de Leon, S., Zamora Gonzalez, J. and Posadas Romero, C. (1995) Lipid and lipoprotein levels in athletes in different sports disciplines. Archives of Internal and Cardiologic Medicine 65, 229-235.
- Carraro, F., Kimbrough, T.D. and Wolfe, R.R. (1993) Urea kinetics in humans of two levels of exercise intensity. Journal of Applied Physiology 75, 1180- 1185.
- Chatterjee, P., Banerjee, A. K., Majumdar, P., & Chatterjee, P. (2006). Changes in Physiological Profile of Indian Women Boxers During a Six Week Training Camp. International Journal of Applied Sports Sciences, 18(2), 39-49.
- Das, D. and Das, A. (1998) Statistics in biology and psychology. Calcutta: Academic Publishers. Durnin, J.V.G.A. and Womersley, J. (1947) Body fat assessed from total body density and its estimation from skin fold thickness: measurements on 481 men and women from 16 to 72 years. British Journal of Nutrition 32, 77-97.
- Ehlers, G. G., Ball, T. E., & Liston, L. (2002). Creatine Kinase Levels are Elevated During 2-A-Day Practices in Collegiate Football Players. Journal of athletic training, 37(2), 151-156.
- El-Ashker, S. (2004). Effect of developing specific endurance on some physiological responses and technical performance effectiveness for youth boxers 'comparative study'. Mansoura University, Egypt. (In Arabic: English abstract).
- El-Ashker, S. (2011). Technical and tactical aspects that differentiate winning and losing performances in boxing. International Journal of Performance Analysis in Sport, 11(2), 356-364.
- Mukharjee, K.L. (1997) Medical laboratory technology. A procedure manual for routine diagnostic tests. Vol I - III. Tata McGraw-Hill Publishing Company Limited, New Delhi.

- National Coaching Certification Programme (NCCP) (1990) Level III. Gloucester, Ontario.
- Powers, S.K. and Howley, E.T. (1997) Exercise physiology. Brown & Benchmark Publishers, Madison.
- Powers, S.K. and Howley, E.T. (2000) Exercise physiology: Theory and application to fitness and performance. McGraw Hill Book Company, New York.
- Reilly, T., Secher, N., Snell, P. and Williams, C. (1990) Physiology of sports. E & F. N. Spon, London.