

Review of Schiff Base Ligands

Sheetal Punjaram Jadhav^{1*}, Prof. Dr. K. H. Kapadnis²

¹ Research Scholar, Department of Chemistry, Savitribai Phule Pune University, Pune

² Vice Principal, M.G.V'S Lokneta Vyankatrao Hiray Mahavidyalaya, Nashik, Maharashtra

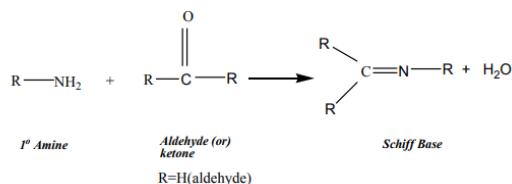
Abstract - Schiff bases & their metal complexes are a heavily researched area of chemistry because of their innovative structural characteristics, distinctive spectral and magnetic properties, and their wide variety of applications in numerous scientific fields. For the advancement of coordination chemistry, a lot of Schiff base ligands have been employed. This article looked closely at the biological actions of metal complexes. Given that the current study focuses on the complexes of Schiff base ligands, a quick basic overview of the chemistry of Schiff bases is necessary.

Keywords - Schiff base ligand, DNA binding agents, Metal Complexes.

----- X -----

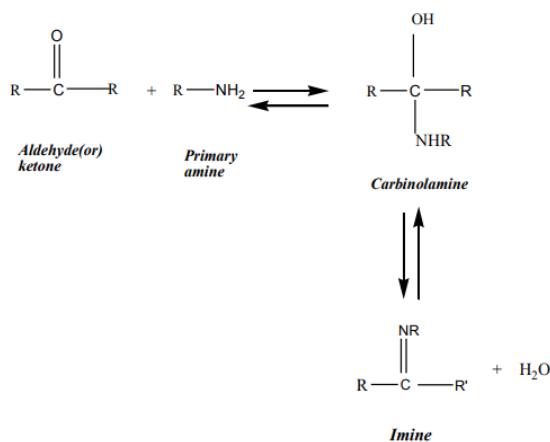
INTRODUCTION

It is obvious that many organic chemicals employed in medicine do not have a completely organic mode of action; some are activated or bio converted by metal ions metabolism. Inorganic elements play significant roles in biological & biological medical processes. Numerous medications have altered toxicological and pharmacological characteristics in the form of metal complexes, and they likely also. The inclusion of metals in the form of complexes demonstrated some level of antibacterial, antifungal, anticancer, and anti-inflammatory action in Schiff bases, which are adaptable C=N (Imine) including compounds with a wide range of biological activity. The substance that contains the azomethine group (-HC=N-) is called a Schiff base.[1]

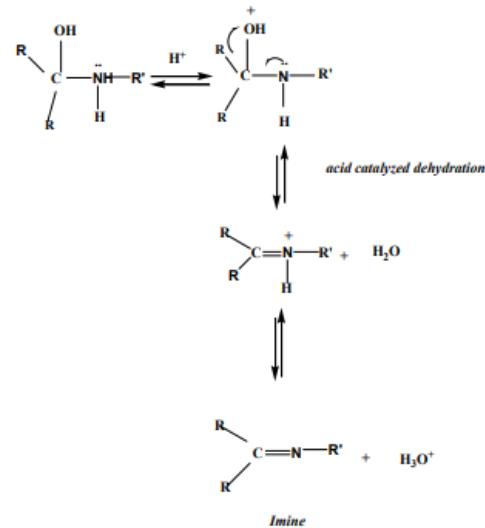

Hugo Schiff initially described them in 1864; they are condensation products of ketones (or) aldehydes with primary amines. Schiff bases are often formed under the catalysis of acids, bases, or heat. Crystalline solids are a frequent kind of Schiff base; they are weakly basic, but at least some of them combine with strong acids to generate insoluble salts. Schiff bases are utilized as ligands for the formation of metal complexes with a variety of various structures or as intermediates in the synthesis of amino acids. A Schiff base interacts with molecules as a Flexi-dentate ligand and frequently coordinates with the N atom of an azomethine group and the O atom of a deprotonated phenolic group. The co-ordination chemistry of Schiff base azomethane depends heavily on nitrogen as well as other donors atoms like oxygen. As a result, an effort is made to research the interactions of reduced Schiff base and transition metals that are relevant to biology as well as the coordination chemistry involved in such interactions. In the current study, we presented the synthesis, characterisation, and metal complexation of reduced Schiff base.[2]

Additionally, the decreased Schiff base metal complexes' antibacterial and analgesic efficacy is assessed and compared to industry norms. However, aliphatic aldehydes are unstable & tend to polymerize, while aromatic aldehydes, particularly those with a strong conjugation system, produce stable Schiff bases. The formation of Schiff base ligands from aldehydes is easier than from ketones. Many distinct structural forms may be attained with Schiff bases. Because of the malleability and diversity of the Schiff base structure, a large variety of compounds & their behavior have been investigated. Most Schiff bases are either bi-, tri-, or tetra-dentate chelate ligands that form very stable complexes with the metal ions. Various researchers have studied their chemical and physical properties for a wide range of applications, including as a preservative, an identifier, a means of shielding or determining whether a compound is an aldehyde or ketone, the purification of carbonyl and amino compounds, and the production of these compounds in complex or sensitive reactions.[3]

Given that Schiff base complexes may be formed that are stable with metal ions, Schiff base ligands are very important in the field of chemistry. Even when subjected to high temperatures and/or water, numerous Schiff base complexes retain their catalytic activity in a broad variety of processes. Given the increasing attention paid to Schiff base complexes as a form of heterogeneous and homogeneous catalysis in recent years, a review article devoted to this topic is warranted. Metal Schiff base complexes have contributed much to the development of co-ordination chemistry. Researchers are interested in transition metal complexes because of their potential to bind and break DNA in physiological contexts. In light of their promise as chemical nucleases, metal complexes are now the focus of research. Studies in the last


several years have indicated that inorganic chemicals may serve as chemical nucleases. In foot printing studies, medical diagnostics, and genetic research, inorganic complexes have been demonstrated to be beneficial as sequence-specific DNA binding agents.[4-5]

• Reaction Scheme


• Mechanism

Schiff bases may be formed from aldehydes and ketones by a reversible acid-base catalyzed or heat-induced reaction. In most cases, the formation is brought to fruition by the isolation of the product or the drying out of the area. Some Schiff bases may be deprotonated into their original aldehydes or ketones & amines using aqueous acid or base.[6]

Carbinolamine dehydration may also be catalyzed by a base. If you're familiar with the E2 elimination of alkyl halides, you'll recognize some similarities between this reaction and that one, except that this one is not a concerted reaction. The process requires two stages due to the presence of an anionic intermediate. The creation of Schiff bases involves two distinct reactions: an addition reaction followed by an elimination reaction.[7]

However, as amines are basic chemicals, the acid content must be kept low. Carbinolamine production is prevented if the amine is protonated and therefore no longer a nucleophile, shifting the equilibrium to the left. Therefore, a slightly acidic environment is ideal for the synthesis of several Schiff bases.[8]

Schiff base production follows a similar procedure, including the addition of a nucleophile to a carbonyl group. The amine serves as the nucleophile in this reaction. In the first stage of the reaction, the amine interacts with the ketone or aldehyde to create an unstable addition molecule termed carbinolamine. The carbinolamine dehydrates by either acid and base catalyzed routes. Since the carbinolamine is indeed an alcohol, it undergoes acid catalyzed dehydration. Iminium salts on the other extremities are extremely quickly hydrolyzed by water & needs to be manufactured under strictly anhydrous conditions.[9] The capability of iminium salt hydrolysis has been put to good use in the production of secondary amines from primary amines which require conversion into the aldimine then by alkylation into the iminium salt following by hydrolysis to provide the secondary amines. Because of the role of Schiff base hydrolysis in a variety of enzyme driven activities, the exact mechanism of hydrolytic breakage of carbon-nitrogen double bonds has been the subject of rigorous investigation both under *in vivo* and *in vitro* circumstances. It is important to note that imines hydrolysis is also an essential part of the Sommelet, Stephen, Sonn-Muller, and Gattermann aldehyde synthesis.[10]

TRANSITION METAL ION

Another kind of magnetic feature that may arise from the alignment of spins in a material is anti-ferromagnetism. (v) The Cu, Ni, and Zn complexes may each have a four-, five-, or six-coordinate geometry, reflecting their unique geometries and the geometric freedom afforded to them by their metal ions.[11]

Electronic configurations of d5 and d10 are neutral with regard to coordination topology. Transition metals Ni and Zn are present in biology & catalytic systems, making the chemistry of their complexes with unique coordination numbers of interest. For the other homes, see In addition to being excellent conductors of electricity, all transition elements (vi)

are also metals. As a result of their increased density, boiling and melting points are quite high for transition metals.[12] These characteristics originate from the metallic bonding facilitated by delocalized electrons, with cohesiveness playing a pivotal role because of its positive correlation with electron affinity. Group 12 metals, on the other hand, have substantially lower melting or boiling temperatures because d-d bonding is prevented by their entire d subshells. Mercury, in reality, is a liquid at normal temperature and has a melting point of -39 degrees Celsius. When it comes to heterogeneous and homogeneous catalysis, some transition metals play pivotal roles. In the Haber process, iron and molybdenum are utilized to synthesize ammonia, while platinum, palladium, and nickel are put to use in the hydrogenation of alkenes.[13]

Since their discovery in the 19th century, coordination molecules have presented a formidable obstacle to the field of inorganic chemistry. They are complicated because their valence is inconsistent with what was understood at the time. In vivo, they provide crucial functions. Both coordination and organometallic chemistry have made considerable use of transition metal complexes with soft or hard donor groups. Coordination compounds are now employed in an astonishingly broad variety of applications that may be broken down into the following categories: Applications using the optical characteristics of coordination complexes, which include sectors as varied as dyes, dyes, nonlinear optics, data storage, display systems, and Solar cells Precursors to semiconductor films or nanoparticles medicinal and biological uses of coordination complexes, such as imaging and treatment; and (v) hydrometallurgical extraction.[14]

These days, cationic, anionic, and neutral molecules of organic, inorganic, and biological origin are all fair game for the coordination chemistry that was formerly limited to transition metal ions.

Intermolecular interactions as well as a wide variety of other phenomena are covered by Cram's host/guest concept. host forms besides just a single ring. This narrowing of attention points to an encouraging difference between studies in both coordination chemistry and Lehn's supramolecular chemistry.[15] Considering recent advancements in the Complexation using macrobicyclic or macropolycyclic ligands; its use in individual polydentate gyrus intrinsic bases and their analogs; developments in superstructure development Several single coordination molecules, or ligands, have shown promise. Coordination has been a compounds, now considered their own field, are often regarded as the most useful chemicals that aid nature in transforming relatively basic inorganic molecules into complex organic ones[16]

APPLICATION OF SCHIFF BASES AND THEIR METAL COMPLEXES

Biological activity, catalysis, analytical chemistry, and industrial chemistry are just a few of the many areas that have benefited greatly from the versatility and chelating capacity of Schiff bases in coordination chemistry. As the prevalence of deep mycosis has been rising, there has been a pressing need for the testing of novel, highly effective antimicrobial medications that have a little impact on the environment. As approximate models for biochemical molecules, Schiff-base complexes are among the most promising candidates. They also play an important role in the evolution of inorganic biochemistry.[17]

Usage In Biology

- DNA Binding & Cleavage**

DNA is the primary therapeutic target because of its role as a regulator of several biochemical processes inside the cell. According to a literature review, researchers are drawn to the creation of novel transition metal complexes as therapeutic materials for DNA binding and cleavage. DNA may also be bound and cleaved by a wide variety of ligands or metal ions. The two types of cleavage routes used in DNA cleavage processes are hydrolytic and oxidative. An enzymatic mechanism, including the hydrolysis of phosphor diester, may be responsible for the formation of fragments. During the oxidative process, nucleobase oxidation and/or sugar breakdown through hydrogen abstraction occur. Photodynamic treatment (PDT) has come to prominence as a primary application of several methods that include irradiation with visible light of wave length, resulting in the oxidative breakage of DNA.[18]

Leads for rational drug design and strategies for enhancing sensitive chemical probes for DNA may be gleaned from the study of transition metal complexes' interactions with DNA. All kinds of non-covalent and ionic interactions are possible in this context. The complex's responsible component is swapped out for a nitrogen base of DNA in covalent binding. However, cationic metal complexes may attach to the DNA helix by non-covalent mechanisms such as intercalation, electrostatic repulsion, and the minor or major groove. Gene expression, gene transcription, mutagenesis, carcinogenesis, and other cellular processes all require specific regions of DNA called loci. Some of the most effective anticancer drugs are tiny compounds that attach to DNA and alter the process of DNA replication, ultimately stopping the development of tumor cells. For intercalation to occur, aromatic heterocyclic rings must be partially inserted between DNA base pairs. Schiff - base complexes have been shown to have promising biological uses in many investigations.[19]

- Protein Binding**

Proteins are the most abundant macromolecules in cells or are essential for normal cellular activities. Proteins like bovine serum albumin (BSA) or human serum albumin are important biomacromolecules because of their versatility as soluble ingredients. Most research has been done on BSA and HSA, although there are many more proteins that have also been investigated. Each of BSA's three homologous domains is composed of two sub-domains. depicts the locations of the two tryptophan residues in BSA, Trp-134 and Trp-212, in the first sub-domain IB or sub-domain IIA, respectively. Also, HSA is divided into three structurally similar domains that each have their own A and B subdomains. Subdomains IIA and IIIA include two hydrophobic pockets, site I and site II, that bind aromatic and heterocyclic ligands, respectively.[21]

- **Antibacterial and Antifungal activities**

Microscopic creatures, which have been around for and over 3.8 billion years, have the greatest genetic and metabolic variety. They play a crucial function in ensuring the survival of ecosystems and are hence an essential part of the biosphere. They are thought to account for around 50% of the total living biomass. The disease-causing bacteria have notably been defenseless to man's desire for survival who has endeavored to deprive him of their environment employing antimicrobial treatments. As a defense measure, these microbes have increased their resistance mechanisms to counter this assault. Antimicrobial resistance amongst bacteria, viruses, parasites, etc. has emerged as a major health concern in recent years.[22]

- **Antioxidant Activity:**

There occurs the production of free radicals, which are atoms or molecules with an unpaired electron, during both healthy and diseased cellular metabolism. It is simple for reactive oxygen species to convert into radicals after reacting with these free radicals. For example, reactive oxygen species (ROS) comprise free radicals like superoxide anion radicals (O_2^-) and hydroxyl radicals ($OH\cdot$), as well as non-free radical species like hydrogen peroxide (H_2O_2) and singlet oxygen (O_2^+). They are generated by several metabolic pathways in living organisms, such as aerobic respiration, peroxisomes, etc. Oxidative damage to macromolecules including DNA, lipids, and proteins is widely believed to be caused by an excess of reactive oxygen species (ROS). Several illnesses and conditions, including cancer, cardiovascular disease, Parkinson's disease, stroke, acute hypertension, and many others, are associated with an increase in oxidative stress in the cells. There have been many attempts to determine whether or not it is possible to synthesize new Schiff base complexes to enhance antioxidant activity, and this has been mostly unsuccessful. Bidentate Schiff base complexes with coumarin-based Schiff base ligands have potent antioxidant action.[23]

- **Antiviral Being**

Metal complexes containing a Schiff base ligand are biocompatible and have potent antiviral action. One of the leading causes of blindness in the industrial belt is epithelial herpetic keratitis. The cobalt complex, as described by Epstein and colleagues, is very successful in the treatment of epithelial herpetic keratitis. Replication of Herpes Simplex Virus Type 1 was reduced in vitro using a rabbit ocular infection model.[24]

- **Antimalarial**

During the intra erythrocytic stage of its life cycle, the parasite may breakdown up to 80% of the hemoglobin in an infected host's red blood cell in order to get essential amino acids. The parasite's food supply includes free heme (FerricPPIX), which is hazardous in high doses. *P. falciparum* has developed a detoxifying process that aggregates free protein into an insoluble biominerals called as hemozoin, so balancing the essential requirement for amino acids with the harmful consequences of heme. Recent research has shown without a reasonable doubt that antimalarial medications in the chloroquine or quinoline families may interfere with hemozoin production. Sadly, drug-resistant forms of *Plasmodia* have emerged, making the development of novel medicines that target previously described targets all the more alluring. Like chloroquine, a novel family of antimalarials has been found recently that inhibits hemozoin aggregation.[25]

CONCLUSION

The Schiff base ligand as well as its transition metal complexes were the subjects of the current study. For pharmaceutical uses, Schiff bases and their metal complexes have received much research. One of the most fascinating subfields in chemistry is coordination chemistry. The uses extend well beyond the chemistry lab and into the realm of clinical care. Using the different approaches, novel Schiff bases are synthesized from different types of aldehyde and amine. Coordination compounds are essential to the proper functioning of enzymes in living organisms. The study of this topic is only beginning; lately, there has been a surge in the amount of literature describing the impact of Schiff bases on pathogens of therapeutic importance.

REFERENCES

1. A.H. Manikshete et al. (2015). Synthesis, characterization, antimicrobial, anticancer and antidiabetic activity of new Manganese (II), Nickel (II) and Cobalt (II) complexes with Salicylaldehyde-4-chlorobenzoylhydrazone, International Journal of Engineering Science Invention, 4(1), 22-29.

2. A.J. Al-Shaheen, I.J. Sallomi and S.A. AlSabaawi (2013). Some new Schiff base Complexes of Copper(II) and Their Biological Screening, Kirkuk University Journal of Scientific Studies, 8(2), 48-58.
3. Abbaspour A. et al. (2012). Aluminium (III)-selective electrode based on newly synthesized tetridentate Schiff bases, *Talenta*, 58, 397 – 403.
4. Abirami M. and Nadaraj V. (2014). Synthesis of Schiff base under solvent-free condition: As a green approach, *International Journal of Chem Tech Research*, 6, 2534 – 2538.
5. Agarwal R. K. et al. (2015). Synthesis, spectral and thermal investigations of some oxovanadium(IV) complexes of isonicotinic acid hydrazide, *Turk. J. Chem.* 29, 309-310.
6. Ali M. A. and Livinstone S. E. (2018). Metal complexes of sulphur-nitrogen chelating agents, *Coordination Chemistry Review*, 13, 101-132.
7. Amira Jihad Al-Shaheen and MiaadAdil Al-Mula (2015). New Dinuclear Schiff Base Complexes of Mn(II) Derived from Amino Acids, 10(1), 127-142.
8. Asha M. S. et al. (2014). Synthesis, Characterization, Thermal and Biological Studies of Substituted Benzophenone Derived Schiff Base Metal(II) Complexes, *Chemical Science Review and Letters*, 3(11), 735-746.
9. B. Prabhakaran et al. (2013). Synthesis and Spectral Studies of Ru(II) Carbonyl Schiff Base Complexes, *International Letters of Chemistry, Physics and Astronomy*, 3, 53-66.
10. Bailer J. C., Emeleus H. J., Nyholm R. and Trotman-Dickinson A. F. (2017). *Comprehensive Inorganic Chemistry*; Pergamon Press: Oxford, UK.
11. Casellato U. et al. (2017). Preparation and properties of mono, homo- and heterobinuclear complexes with a new heptadentate Schiff base ligand, *Inorg. Chem. Acta*, 95, 306-316.
12. El-Gammal et al. (2012). Binuclear Copper(II), Cobalt(II) and Nickel(II) complexes of N1-ethyl-N2-(pyridin-2-yl) hydrazine-1,2-bis(carbothioamide): Structural, spectral, pH-metric and biological studies, *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 96, 444–455.
13. Figgs B.N. (2015). *Introduction to Ligand Field*; Wiley: New York, USA.
14. G. N. Ramesh et al. (2012). Synthesis, Characterization and Biological Activities of Manganese(II) Complex: Molecular Modeling of DNA Interactions, *Der Pharmacia Lettre*, 4 (4), 1299-1307.
15. K. J. Dhone et al. (2012). Synthesis, characterization and biological activity of mixed ligand Co(II) complexes of Schiff base 2-amino-4-nitrophenol-n-salicylidene with some amino acids, *Journal of Chemical Pharmaceutical Research*, 4(2), 1413-1425.
16. Lever, A.B.P. (2016). *Inorganic Electronic Spectroscopy* (2nd Ed.). Elsevier: Amsterdam, The Netherlands.
17. MarkandanUsharani et al. (2013). Coordination of binucleating Schiff base with Cu(II), Co(II), Ni(II) and Mn(II) ions; designing, structural aspects and pharmacological properties, *International Journal of Medicine and Pharmaceutical Sciences*, 3(3), 9-22.
18. MendumPadmaja et al. (2012). Synthesis, Spectral Characterization, Molecular Modeling, and Antimicrobial Studies of Cu(II), Ni(II), Co(II), Mn(II), and Zn(II)Complexes of ONO Schiff Base, *EJournal of Chemistry*, 9(4), 2145-2154.
19. Mhaske G. et al. (2014). Aqua medicated, microwave assisted, synthesis of Schiff bases and their biological evaluation, *International Journal of Innovative Research in Science, Engineering and Technology*, 3, 8156 – 8162.
20. N. R. Bader (2010). Applications of Schiff's bases chelates in quantitative analysis: A review, *Rasayan J. Chem.*, 3(4), 660-670.
21. Nakamoto (2019). *Infrared and Raman Spectra of Inorganic and Coordination Compounds* (3rd Ed.), John Wiley and Sons, New York, pp.24, 87, 154, 166, 173.
22. Nora H. Al-Shaan (2011). Synthesis, Characterization and Biological Activities of Cu(II), Co(II), Mn(II), Fe(II), and UO₂(VI) Complexes with a New Schiff Base Hydrazone: O-Hydroxyacetophenone7-chloro-4-quinoline Hydrazone, *Molecules*, 16, 8629-8645.
23. R. M. Silverstein, G. C. Bassler and T. C. Morrill (2014), *Spectrometric Identification of Organic Compounds*, (5th Ed.), John Wiley and Sons, Inc., New York, 127.
24. Ueno K. and Martel A. E. (2018). Ultraviolet and visible absorption spectra of metal chelates of bisacetylacetoneethylenediimine and related compounds, *J. Phys. Chem.* 61, 257-261.
25. Zainab Hussain et al. (2016). Metal Complexes of Schiff's Bases Containing Sulfonamides Nucleus: A Review, *Research Journal of Pharmaceutical, Biological and Chemical Sciences*, 7(5), 1008- 1025.

Corresponding Author

Sheetal Punjaram Jadhav*

Research Scholar, Department of Chemistry,
Savitribai Phule Pune University, Pune