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Abstract – From last years, fractals and the study of their dynamics is one of the emerging and attractive 
areas for mathematicians. A Fractal is a geometric shape each part of which has the same characteristics 
as the original one. By zooming a fractal, one can find that the patterns and shapes will continue 
repeating, forever. In this paper, I present a brief survey on fractals. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

1. INTRODUCTION 

In mathematics, a dynamical system is a system in 
which a function describes the time dependence of a 
point in a geometrical space. It is the study of 
iteration of maps over a time period [12]. Nonlinear 
dynamics studies systems governed by equations 
more complex than the linear, ax + b form. Nonlinear 
systems, such as the weather or neurons, often 
appear chaotic, unpredictable and yet their behavior 
is not random. 

Among the major recent developments in 
understanding the structures of objects found in 
nature, the notion of fractals occupies an important 
place. A fractal is a non-regular geometric shape that 
has the same degree of non-regularity on all scales. 
In mathematics, a fractal is an object used to 
describe and simulate naturally occurring objects. A 
fractal is defined as a fragmented geometric shape 
which can split into parts that are considered a 
reduced copy of the whole. Fractal theory is a 
popular branch of mathematical art. In mathematical 
visualization, fractals look very beautiful even though 
they can be created using simple patterns. A fractal 
is a never ending and infinitely complex pattern that 
is self-similar across different scales. By zooming a 
fractal, one can find that the patterns and shapes will 
continue repeating forever [2, 6]. 

Fractal: 

Fractals are some of the most attractive and most 
inexplicable geometric shapes. The term ―Fractal‖ 
was first used by French Mathematician Benoit B. 
Mandelbrot in 1975 and defined a fractal as a set 
whose Hausdroff dimension is strictly greater than its 
topological dimension. It was taken from the Latin 
word franger, which means broken or fractured. The 
term was used to describe objects that were not 
easily fit into traditional geometrical settings. 
Mathematicians have used fractal geometry to 
present some interesting complex objects to 
computer graphics. 

According to Pickover [11], the mathematics behind 
fractals began to take shape in the 17th century 
when the mathematician and philosopher Gottfried 
Leibniz considered recursive self-similarity. After 
two centuries, in 1872 Karl Weierstrass presented 
the first definition of a function with a graph that 
would today be considered fractal. 

A fractal often has the following features: 

(i) It has a fine structure at arbitrarily small 
scales. 

(ii) It is self-­similar (at least approximately). 

(iii) It is too irregular to be easily described in 
traditional Euclidean geometry. 

(iv) It has a dimension which is non-­integer 
i.e. fraction. 

(v) Its fractal dimension is greater than its 
topological dimension (i.e. the dimension of 
the space required to ―draw‖ the fractal). 

(vi) It has a simple and recursive definition. 

Mathematicians have attempted to describe fractal 
shapes for over one hundred years, but with the 
processing power and imaging abilities of modern 
computers, fractals have enjoyed a new popularity 
because they can be digitally rendered and 
explored in all of their fascinating beauty. 

To create a mathematical fractal, you can start with 
a simple pattern and repeat it at smaller scales, 
again and again, forever. In real life, of course, it is 
impossible to draw fractals with ―infinitely small‖ 
patterns. Howeverwe can draw shapes which look 
just like fractals. Using mathematics, we can think 
about the properties a real fractal would have – and 
these are very surprising. Following are the results 
of sets that are commonly referred as fractals. 
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Julia Set: Fractals are some of the most beautiful 
and most bizarre geometric shapes. Julia set is an 
example of such beautiful geometric shapes. Julia 
sets are certain fractal sets in the complex plane that 
arise from the dynamics of complex polynomials. 
Interest in Julia setsand related mathematics began 
in 1920‘s with Gaston Julia [2]. Now, fractal theory is 
incomplete without the presence of Julia sets. Julia 
sets have been studied for quadratic [5, 8, 2], cubic 
[4, 9] and higher degree polynomials [3] under Picard 
orbit [9], which is an example of one-step feedback 
process. In last few decades many beautiful Julia 
sets studies using two-step feedback process 
(Superior orbit) [13], three step feedback process (I – 
Superior orbit) [13], Noor orbit [1] and SP orbit [10]. 
Following is the definition of the Julia sets for 

( ) n

cQ z z c 
, where n = 2, 3,... 

Definition 1. Let K be the set of points whose orbit is 
bounded under the function iteration Q(z). Then the 
set k is called the filled Julia set for the function Q(z). 
The Julia set Q is the boundary of the filled Julia set 
K [7]. 

The following theorem gives the general escape 
criterion of the Julia sets and further their corollaries 
refine the escape criterion for the computational 
purposes using Picard orbit [6, 13], superior orbit, I-
Superior orbit, Noor Orbit [1], SP- orbit [10]. 

Theorem 1. Suppose |z| ≥ |c| > 2, where constant c 
is in the complex plane. Then we 

have
| ( ) |n

cQ z asn 
. 

Corollary 1. Suppose |c| > 2, then the orbit of 0 

escapes to infinity under function iteration cQ
. 

Corollary 2. Suppose 
  ,  2 .z max c

 Then 

| ( ) | (1 ) | |n n

cQ z z 
and SO

| ( ) | ,n

cQ z 
 as    n 

→ ∞, where λ is a positive number. 

Theorem 2.  (General escape criterion) For general 

function, 
( ) n

cQ z z c 
, n = 1, 2, 3, …, where 0 < α 

≤ 1 and c is in the complex plane. Define 

1 (1 ) ( )cz z Q z   
 

2 1 1(1 ) ( )cz z Q z   
 

…….. 

1 1(1 ) ( )n n c nz z Q z    
 

for n = 1, 2, 3,…. Thus, the general escape criterion 

is 

1
12{| |, ( ) }nc 


. 

Corollary 3. Suppose that 

1
12| | ( ) nc 


. Then the 

superior orbit SO( cQ
, 0, n ) escape to infinity. 

Corollary4. Suppose that for some k ≥ 0, we have  

| |kz
> max

1
12{| |, ( ) }nc 


. Then 

1| | (1 ) | |; | |k k nz z so z asn    
. 

These corollary gives general algorithm for 
computing filled Superior Julia sets for the function of 

the form, 
( ) n

cQ z z c 
, n = 1, 2, 3, …. 

Fig 1 and Fig 2 represents the superior Julia sets 
for quadratic and cubic maps using two superior 
iterative procedures. 

 

Figure 1: Superior Julia set for the Quadratic 
Map. 

 

Figure 2: Superior Julia set for the Cubic Map. 

In 2010, Chauhan et. al. [1] generated new Julia 
sets via Ishikawa iterates. The following theorem 
and their corollarygives the general I-superior 
escape criterion for the Julia sets. 

Theorem 3 [4]. Let us assume that |z| > |c| >
2

s ; |z| 

> |c| >
'

2
s  , where 0 < s < 1, 0 <

's < 1 and c is a 
complex number. Define 

1 (1 ) ( )cz s z sQ z  
 

2 1 1(1 ) ( )cz s z sQ z  
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… 

… 

… 

1 1(1 ) ( ),n n c nz s z sQ z   
 

where 
( )cQ z

is a quadratic, cubic and biquadratic 

polynomial in term of s and n = 2, 3, 4,… 

Then  
| |nz as n 

. 

Corollary 5. Suppose that |c| >

2
s ; |c| >

'
2

s  . Then, 
the relative superior orbit of 

Ishikawa
'( ,0, , )cRSO Q s s

escapes to infinity. 

Corollary 6. Suppose that 
'

2 2| | {| |, , }z c
s s


, 

then 
| | (1 ) | |n

nz z 
 add 

| |nz as n 
. 

Fig 3 and Fig 4 represents I-Superior Julia sets for 
the quadratic and cubic maps. 

 

Fig. 3 Relative Superior Julia Set for s=0.4, s'=0.1, 
c=2.1+5.53i 

 

Fig. 4 Relative Superior Julia Set for s=1, s'=0.5, 
c= -0.146+1.54i 

In 2014, Ashish et. al. [18] generates new Julia sets 
via Noor iterates. The following theorem gives the 
general escape criterion for the Julia sets and its 
corollaries further presents the escape criterion for 
computational purpose using Noor iterates. 

Theorem 4 [13]. Suppose 
2| | | |z c


 
,

2| | | |z c


 
 and  

|z|>|c| >2/γ, where 0 <α< 1, 0 <β < 1 and 0 < γ < 1 
and c is a complex number. Define 

1 (1 ) ( )cz z Q z   
 

2 1 1(1 ) ( )cz z Q z   
 

… 

… 

1 1(1 ) ( )n n c nz z Q z    
 

where 
( )cQ z

 can be a quadratic, cubic or 
biquadratic polynomial in terms of γ and n = 2, 3, . . 

., then 
| |nz as n 

. 

Corollary 7. Suppose that |c| > 2/α, |c| > 2/β and 

|c| > 2/γ, then the orbit ( ,0, , , )cNO Q    escapes to 
infinity. 

Corollary 8. (Escape criterion). Let 
2 2 2| | {| |, , , }z c     

then | | (1 ) | |n

nz z  and 
| |nz 

 as    n → ∞. 

Corollary 9. Let for some k>0, we 

have
2 2 2| | {| |, , , }z c   

. Then 1| | (1 ) | |n

k kz z    so that 
| |nz as n  . 

 

Fig. 5. Quadratic Julia set for, a = 0.2, b = c = 1, 
c = 0.05 + 0.05I. 
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Fig.6. Cubic Julia set for, a = 0.1, b = 0.2, c = 0.3, 
c = -0.1–0.5I. 

Recently, Kumari et. al. [19] generate new Superior 
Julia and Superior Mandelbrot sets for complex-
valued polynomials such as quadratic, cubic and 
higher degree polynomials using SP orbit, which is 
an example of four-step iterative procedure. 

The following theorem gives the general SP-iterates 
escape criterion for the Julia sets and its corollaries 
further presents the escape criterion for 
computational purpose using SP-iterates. 

Theorem 5 [13]. For a general function ( ) n

cG z z c  , n 

=1, 2, 3…,  where 0 1   ,
0 1 

, 0 1   , and c 
is a complex number. Define 

1 (1 ) ( )cz u G u  
 

2 1 1(1 ) ( )cz u G u  
 

- - - 

- - - 

- - - 

1 1(1 ) ( )n n c nz u G u    ,   n = 1, 2, 3, 4, … 

Then, the general Superior escape criterion is 
1/ 1 1/ 1 1/ 1max{ ,(2 / ) ,(2 / ) ,(2 / ) }n n nc      . 

Corollary 10. Suppose 
1/ 1(2 / ) nc   , 

1/ 1(2 / ) nc   and 
1/ 1(2 / ) nc   exists. Then the orbit ( ,0, , , )cSP G    escapes 

to infinity. 

Corollary 11. (Superior Escape Criterion). Let us 
assume that for some k ≥ 0, 

1/ 1 1/ 1 1/ 1max{ ,(2 / ) ,(2 / ) ,(2 / ) }k k k

kz c      
, 

then 1k kz z  
and nz 

as n ∞. 

Fig 7 and Fig 8 represents the superior Julia sets for 
quadratic and cubic maps in SP-iterates. 

 

Fig. 7 Superior Julia set for c = -0.23+0.23I α = 

0.3,  β = 0.6,  = 0.9 

 

Fig. 8 Cubic Superior Julia set for c = - 0.2+0.6I 

α = 0.7, β =  = 0.03 

Mandelbrot Set [5]. The Mandelbrot set M is the 
collection of all parameters c for which the Filled 

Julia set of cQ  is connected, that is 

{ : ( ) }cM c K Q isconnected 
. 

The Superior Mandelbrot set SM for the quadratic 

map 
2( )cQ z z c   is defined as the collection of all 
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c

 for which the filled Julia set is connected, that 
is 

{ :{ (0)}; 1,2,3,... }n

cSM c Q n isconnected  
 

We choose the initial point 0, as 0 is the only critical 

point of cQ
[5]. 

The Mandelbrot set ISM for ( ) n

cQ z z c  , where n = 2, 3, 
4,…, with respect to Ishikawa iterates is called I-
superior Mandelbrot set[1]. 

The Mandelbrot set of ( ) n

cQ z z c  where n = 2, 3, 4,…, 
with respect to Noor iterates is called Mandelbrot set 
[10]. 

Similarlly, the Mandelbrot set of ( ) n

cQ z z c  where n = 
2, 3, 4,…, with respect to SP-iterates is called 
Superior Mandelbrot set[13]. 

Escape criterion play a crucial role  in the analysis 
and generation of Mandelbrot set, superior 
Mandelbrot set [6], I-superior Mandelbrot set [1], 
Mandelbrot set [10] and Superior Mandelbrot set 
[13]. The escape criterions studies in above section 
of Julia set are applicable in the generation of 
Mandelbrot set, superior Mandelbrot set, I-superior 
Mandelbrot set, Mandelbrot set and Superior 
Mandelbrot set. 

Following are the general escape criterions of 
Mandelbrot set with some attractive figures: 

► General escape criterion of Mandelbrot set 

for ( ) n

cQ z z c  , is | | max{| |,2}kz c . Fig. 9, shows 
the Mandelbrot sets generated by Picard 
Orbit. 

 

Figure 9: Mandelbrot set. 

► General escape criterion of Mandelbrot set 

for ( ) n

cQ z z c  , is 
1

12| | max{| |, ( ) }k

kz c 
 . Fig 10 and Fig 11, 

shows the Mandelbrot sets for quadratic and cubic 
maps generated by Maan iteration procedure. 

 

Fig 10 Superior quadratic Mandelbrot set 

 

Fig 11: Superior cubic Mandelbrot set 

► General escape criterion of I-superior 

Mandelbrot set for ( ) n

cQ z z c  , is 
1 1

1 12 2| | max{| |, ( ) , ( ) }k k

kz c  
  . Fig 12 and Fig 13, 

shows the Mandelbrot sets for quadratic 
and cubic maps generated by three step 
iteration procedure. 

 

 

Fig 12 Mandelbrot set for quadratic map 
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Fig 13 Mandelbrot set for cubic map 

► General escape criterion of Noor Mandelbrot 

set for ( ) n

cQ z z c  , is 
1 1 1

1 1 12 2 2| | max{| |, ( ) , ( ) , ( ) }k k k

kz c   
   . 

Fig 14 and Fig 15, shows the Mandelbrot 
sets for quadratic and cubic maps generated 
by three step iteration procedure. 

 

Fig. 14 Mandelbrot set (a=0.3,b=0.6, c=0.3) 

 

Fig. 15 Mandelbrot set (α=0.3, β=0.1, γ=0.3) 

► General escape criterion of Mandelbrot set 

for ( ) n

cQ z z c  , is 
1 1 1

1 1 12 2 2| | max{| |, ( ) , ( ) , ( ) }k k k

kz c   
   . Fig 

16 and Fig 17, shows the Mandelbrot sets 
for quadratic and cubic maps generated by 
SP iteration procedure. 

 

Fig. 16 Superior Mandelbrot  set for n=3 (α =0.1, 

β = = 0.9) 
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Fig. 17 Superior Mandelbrot set for n=3 (α = β = 

= 0.9) 

The implimentation difference between the Julia set 
and the Mandelbrot set is the way in which the 
function is iterated. The Mandelbrot set iterates 

2z z c   with z alwayes starting at 0 and varying the c 

value. The Julia set iterates 
2z z c   for a fixed c 

values and varying z values. In other words, the 
Mandelbrot set is in the parameter space, or the c-
plane, while the Julia set is in the dynamical space, 
or the z-plane. For a detailed study, one may refer to 
[15]. 

Contor Set 

In mathematics, the Cantor set is a set of points lying 
on a single line segment that has a number of 
remarkable and deep properties. It was discovered in 
1874 by Henry John Stephen Smithand introduced 
by German mathematician Georg Cantor in 1883 [5]. 
The Cantor set find a celebrating space in 
mathematical analysis ans its applicatins. The Contor 
set has many intersting properties and 
consequences in the filled of set theory, topology and 
fractal theory [6]. 

Recently, in 2010 Rani [14], introduction the superior 
Contor sets and presented them graphically by 
Devil‘s staircases. They generated new Contor sets 
by two methods. In one method, initiator is divided 
into three equal parts and either left segment or right 
segment of initiator is droped and in the other 
method, unequal division of initiator has been done. 

The Cantor ternary set C is created by iteratively 
deleting the open middle third from a set of line 
segments. One starts by deleting the open middle 

third (
1 2

3 3, ) from the interval [0, 1], leaving two line 

segments:
1 2

3 3[0, ] [ ,1]
 Next, the open middle third 

of each of these remaining segments is deleted, 
leaving four line segments: 

  82 1 2 71
9 99 3 3 90,  ,[ , ] [ [  ] , ]1  .  

This process is 
continued ad infinitum, where the nth set is 

1 12

3 3 3

n n
n

C C
C  

 
   

   for n ≥ 1, and 0 [0,1]C 
 

The Cantor ternary set contains all points in the 
interval [0, 1] that are not deleted at any step in this 
infinite process: 

1
n

n
C C




 

. 

The first six steps of this process are illustrated 
below. 

 

 This process of removing middle thirds is a simple 
example of a finite subdivision rule. The Cantor 
ternary set is an example of a fractal string. 

Besides the sector mentioned above, chaos and 
fractals are the new frontiers of science and have 
come to play significant roles in the study of 
applicable areas of sciences, medicine, business, 
textile industries and several other areas of human 
activity [2]. 

Sierpinski Triangle (Gasket) 

The Sierpinski triangle also called the Sierpinski 
gasket or the Sierpinski Sieve, is a fractal and 
attractive fixed set with the overall shape of an 
equilateral triangle, subdivided recursivelyinto 
smaller equilateral triangles. Originally constructed 
as a curve, this is one of the basic examples of 
self-similar sets, i.e., it is a mathematically 
generated pattern that can be reproducible at any 
magnification or reduction. It is named after the 
Polish mathematician Wacław Sierpiński [5, 11]. 

The Sierpinski triangle constructed from an 
equilateral triangle by repeated removal of 
triangular subsets: 

1. Start with an equilateral triangle. 

2. Subdivide it into four smaller congruent 
equilateral triangles and remove the central 
triangle. 

3. Repeat step 2 with each of the remaining 
smaller triangles forever. 

https://en.wikipedia.org/wiki/File:Cantor_set_in_seven_iterations.svg
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The first four steps of this process are illustrated 
below. 

 

Each removed triangle (a trema) is topologically an 
open set. This process of recursively removing 
triangles is an example of a finite subdivision rule [5, 
9]. 

Sierpinski Carpet 

The Sierpinski carpet is a plane fractal first described 
by Wacław Sierpiński in 1916. The carpet is one 
generalization of the Cantor set to two dimensions. 
The same procedure is then applied recursively to 
the remaining 8 sub squares, ad infinitum. It can be 
realised as the set of points in the unit square whose 
coordinates written in base three do not both have a 
digit '1' in the same position[11]. 

The process of recursively removing squares is an 
example of a finite subdivision rule. 

The Sierpinski carpet can also be created by iterating 
every pixel in a square and using the following 
algorithm to decide if the pixel is filled. The following 
implementation is valid C, C++, and most languages 
derived from C. 

Koch Snowflake and Koch curve 

The Koch snowflake also known as the  Koch star, or 
Koch island is a mathematical curve and one of the 
earliest fractalcurves to have been described. It is 
based on the Koch curve, which appeared in a 1904 
paper titled "On a continuous curve without tangents, 
constructible from elementary geometry" by the 
Swedish mathematician Helge von Koch [11]. 

The Koch snowflake can be constructed by starting 
with an equilateral triangle, then recursively altering 
each line segment as follows: 

1. Divide the line segment into three segments 
of equal length. 

2. Draw an equilateral triangle that has the 
middle segment from step 1 as its base and 
points outward. 

3. Remove the line segment that is the base of 
the triangle from step 2. 

After one iteration of this process, the resulting 
shape is the outline of a hexagram. 

The Koch snowflake is the limit approached as the 
above steps are followed over and over again. The 
Koch curve originally described by Helge von Koch is 
constructed with only one of the three sides of the 

original triangle. In other words, three Koch curves 
make a Koch snowflake [5, 9]. 

The first six steps of this process are illustrated 
below. 
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