

Mr. Akash Pandey1* Dr. Umesh Kumar Gupta2

w
w

w
.i
g

n
it

e
d

.i
n

2046

 Journal of Advances and Scholarly Researches in Allied Education
Vol. 16, Issue No. 4, March-2019, ISSN 2230-7540

A Study of Operations Research Solutions
Techniques in Combinatorial Problem towards

Constraint Programming

Mr. Akash Pandey1* Dr. Umesh Kumar Gupta2

1
 Research Scholar, Himalayan University Itanagar, Arunachal Pradesh

2
 Associate Professor, M. G. P. G. College Gorakhpur (U.P.)

Abstract – Many numerical identities are proved applying clever but informal combinatorial arguments. A
formal representation is presented to prove these identities closely following these arguments. The main
formal tool used to that end is, operationally, an abstract and axiomatic generalization of the Sigma
notation (Σ), which is utilized for expressing and manipulating summations and counts. Operational
properties are provided with algebraic properties that make it possible to perform different naturally
important operations. In this paper we present a formal version and some more examples that show how
to practically interpret combinatorial arguments used in literature. We present typical combinatorial
evidence of the inclusion-exclusion theorem. Combinatory evidence of numerical identity is either that
both sides of the given equation count the very same kinds of objects in two different ways or show a
bijection between the sets that show up on each side of the equation. The two expressions must
therefore be the same. The dream most combinatorialists make when they prove their identity is this kind
of argument. Such arguments are generally informal and, it is likely to be safe to say, ad hoc, without a
unified formal basis.

Key Words – Operations Research, Solutions Techniques, Combinatorial Problem, Constraint
Programming

- X -

INTRODUCTION

In this article we show a formal display that closely
follows the appropriate combinatorial arguments,
which proves this identity. After presenting formal
notes and their fundamental algebraic
transformations, we show how, in practice,
combination arguments used in the literature to
demonstrate a selection of identities with binomial
coefficients and permutations can be formally
interpreted. We shall give the typical combination
proof of the theorem Inclusion Exclusion in particular
in a formal version. Furthermore, some of these
calculations illustrate how a recursive definition can
be reached for resolving a counter problem, i.e.
formally derived a recursive algorithm to solve the
problem. The official tool used is known as an
operational instrument. In the main, the Sigma (Σ)
notation, used to express and manipulate
summations and numbers, is an abstract and
axiomatic generalization. Operations enable various
natural operations with combinatorial significance
because of their algebraic properties. Among these
algebraic properties are: a way of splitting
summaries with different divided separation criteria
(a measure called conditioning) and the ability to

map or transform the counted elements in a
bijection to a variety of elements (basically, count
and summation indices) (the essence of a
combinatorial argument). In terms of graphical,
symbolic and material object count, combinational
arguments are generally expressed, such as paths
along the rims of a grid, 'montane ranges,"
matched parenthetic parentheses, grid tiling by
blocks, beaded necklaces etc. We modell these
objects with discreet mathematical structures like
the finite numbers, strings and finite sequences of
numbers in order to officially formalize these
concepts (possibly considered as circular). This
formal device not only offers official support for
expressing and reasoning ideas and evidence, but
also enables the deduction of recursive functions to
identify solutions to count problems. This method
can be widespread to produce formal derivations of
recursive algorithmic solutions through gradual
refining of certain specifications. We also find this
approach feasible to make automated evidence
control of combinatorial evidence easier.

Mr. Akash Pandey1* Dr. Umesh Kumar Gupta2

w
w

w
.i
g

n
it

e
d

.i
n

2047

 A Study of Operations Research Solutions Techniques in Combinatorial Problem towards Constraint
Programming

Schemes for Incorporating OR into CP

CP‘s unique concept of a constraint governs how OR
methods may be imported into CP. In order to reduce
variable domains, the most obvious function of an
OR method is to apply it to a constraint or subset of
limits. If the restrictions include certain linear
inequalities, a variable subject to such inequalities
can be minimized or maximized, thus possibly
reducing the domain of the variable. The problem of
minimizing or maximizing is a linear programming
(LP) issue, an OR staple. This is one example of
OR's most common scheme: to relax the CP
problem, in the form of an OR model, like an LP
model. Relaxation solution helps to reduce the
domain or guide the search. Other OR models that
can play this role include linear (MILP) models
(which can be relaxed by themselves), relaxation
from Lagrangean and dynamic programming models.
OR has also developed expert relieves for a wide
range of ordinary situations and offers tools to relax
globally.

A CP solver has several advantages of relaxation.
(a) it may tighten a variable boundary. (b) In the
original problem, its solution may become feasible.
(c) If not, the solution may be a promising guide for
the search. (d) One solution can allow domains to be
filtered in other ways, for example through cost
reduction or Lagrange multipliers, or by dynamical
programming examinations of state space. (e) The
solution can deliver a binding value for optimal
pruning of the search tree for optimisation problems.
(e) More generally, by combining several limitations
relaxed in a single OR-based relaxation process,
global problems that are only partly captured by
constraint propagation can be taken advantage of.
The problem is broken down by other hybridisation
schemes, so the CP and OR can attack the parts of
the problem they most suit. To date, branch and
price algorithms and generalizations of Benders
degradation have been the most important schemes.
Branch and price based on CP generate a column,
i.e., the variables that are to be dynamically added to
enhance the solution during a branch search. For the
"row generation," decomposition is often done using
CP; in other words, restrictions (goods) are
generated that guide the main search method.

Table 1: Sampling of computational results for
methods that combine CP and OR

PRELIMINARIES

Throughout this text, a one-argument function
application over a variable or a constant is denoted
by an infix dot ‗.‘. To denote multiplications,
generally, we will avoid the usual juxtaposition
convention by using an explicit infix dot sign (·) due
to the confusion caused by naming variables with
more than one letter. By true and f alse , we
denote, besides the boolean values, the obvious 0-
ary constant predicates. The following logical
connectives are listed in order of decreasing
binding power (those listed as a pair has the same

precedence): ¬ denotes negation, ∨ and ∧ denote
disjunction and conjunction respectively, and ≡ and
6≡ denote equivalence and discrepancy

respectively. As usual, the symbols ∀ and ∃ denote
the universal and the existential quantifier
respectively.

Mr. Akash Pandey1* Dr. Umesh Kumar Gupta2

w
w

w
.i
g

n
it

e
d

.i
n

2048

 Journal of Advances and Scholarly Researches in Allied Education
Vol. 16, Issue No. 4, March-2019, ISSN 2230-7540

For set operations, we use the usual symbols for

union (∪), intersection (∩), membership (∈) and
inclusion (⊆). All other notations will be defined in the
place where they are used.

A. Operationals

Summations may be interpreted as iterations of the
addition operation. This view of iterated sums can be
generalized to any associative and commutative

operator ⊕ with advantages of unified notation and
calculation through their generalized axiomatic
description. The expression

denotes the iteration of ⊕ over the values of the
expression P.i for all the values of i belonging to the
domain (or type) D and satisfying the range condition
R.i. We call this kind of expression an operational on

⊕. These expressions are also known as
quantifications. Observe that in order to avoid an
accumulation of parenthesis, we sometimes write
(when it does not lead to confusion) R.i to denote
application of expression R (considered as a
function) to argument i.

In order to keep some resemblance with the
traditional notation we allow to write

 instead of

 instead of

. To deal with a false range R.i, it

becomes necessary that operator ⊕ has an identity
in addition to the symmetry and associativity
properties. The table above illustrates the unifying
effect of this notation.

Any occurrence of index i in the expressions P.i and
R.i above, are said to be bound by the operational.
Strictly, index i should be always annotated with a
type to indicate the range of values it may assume;
however, to avoid cumbersome repetitions, we may
state just once the type of a certain index in the
context of a calculation. In addition, the range is
sometimes omitted when it is refers to the entire
domain of variation of i; formally, this correspond to
have the predicate true as a range. In this case the
form of the operational is

One more thing, the counting operational is
somewhat different from the others. We introduce it
as follows.

could be considered ‗syntactic sugar‘ for

Similarly, (#i ∈ D :: R.i) is defined as (Σi ∈ D : R.i :

1) or |{i ∈ D | R.i}| (the cardinal of the set of
elements in D that fulfill property R).

B. Some algebraic properties of operationals.

The operational unifying effect is not limited to
notation. It is possible to give operations an
abstract treatment in accordance with calculation
style in order to easily manipulate the algebraic.
Due to the fact that operations are defined as
iterating applications of an associative and
switched binary operator, properties are
generalized which are generally only summaries.
These properties are achieved every time the
operations are well defined, even if an endless
number of operations are involved. For example, if
they converge in the case of summations.

Being ⊕ an arbitrary associative commutative
binary operator defined and taking values on a
domain D, the following properties are valid for

operationals of the form (⊕i : R : T) (with R, S
Boolean expressions, and T an expression taking
values on D). In the following, we suppose as
understood that indices i, j take all their values on
D.

Splitting.

whenever ranges R and S are disjoint.

Formally, .

Mapping.

whenever f is a bijective function from E to D such

Mr. Akash Pandey1* Dr. Umesh Kumar Gupta2

w
w

w
.i
g

n
it

e
d

.i
n

2049

 A Study of Operations Research Solutions Techniques in Combinatorial Problem towards Constraint
Programming

that for all i in D fulfilling
R.

Nesting.
This requires index j not appearing in R as a free
(unbound) variable.

Empty Range. This rule

requires ⊕ to have an identity element u.

One Point.

 is the
expression obtained from substituting K for all
occurrences of i in T.

For the counting operational fulfills similar properties,
here R, S, T must be Boolean expressions.

Splitting.
whenever ranges R and S are disjoint.

FORMAL VERSIONS OF SOME
COMBINATORIAL PROOFS

In this section we present different examples of
calculational proofs of numerical identities inspired
by the corresponding combinatorial proofs as they
appear in the literature. For the sake of easing
human reading, these proofs are rigorous but not
entirely formal. For instance, the mention of the
axioms for operationals in the explanations for each
step of our calculations just hints the main ideas to
justify them. In particular, we leave to the reader to
justify that in the mapping steps, the corresponding
transformations are in fact bijections from one range
of values to the other.

A. Counting Permutations

We define Pn as the number of permutations of the
elements in [n]. Formally, we represent a

permutation in as a non-repeating sequence q in
sq[n] of length n, that encodes a bijection mapping

any . Consequently, we define pm[n] as

where nrep.s means that
the sequence s does not repeat its elements.

For the sake of easy manipulation of permutations,
we define, for a (finite) sequence s of integers, its
normalization with respect to the deletion of its

element in position as follows

meaning that s.i is removed from s, elements of s
less than s.i are left unchanged, and elements bigger
than s.i are subtracted by 1. Here, t=sb1(s, m), with
m a value not occurring at s, is equivalent to the
formal expression

To remove an element of a permutation p of the
elements of [n] in position i implies to shift, one
position to the left, the elements to the right of the
element removed, as well as subtracting 1 from all
the elements bigger than it. This way, we bijectively
obtain a permutation of [n−1].

Expressing it is easy to
calculate. Clearly P1 = 1. For n>1 we have

Observing the obtained recursive equation, we

conclude that . We have proved
the following proposition.

Proposition 1:

B. Binomial Coefficients

We define the arithmetic function as the only
solution to the functional equation on X a

It is not hard to prove that n k corresponds to the
number of subsets of size k, of a set of n elements
(for instance [n], the set of integers from 1 to n).
This shows the existence of a solution, its
uniqueness is easily proved by induction.

Proof : Let

Considering the
cases defining equation (0), we note that the cases
k >n, k= 0 and k=n are pretty simple, since in those
cases, there is just one subset or none at a

Mr. Akash Pandey1* Dr. Umesh Kumar Gupta2

w
w

w
.i
g

n
it

e
d

.i
n

2050

 Journal of Advances and Scholarly Researches in Allied Education
Vol. 16, Issue No. 4, March-2019, ISSN 2230-7540

This proves that is a solution for X in

equation (0), and therefore,

The two previous propositions show how to formally
obtain a recursive definition for the solution of a
counting problem. Next proposition correspond to
Identity

CONCLUSION

This study was to demonstrate how to give the
combinatorial arguments the formal content which
we believe to have achieved. We did this to find
ways to facilitate their automatic testing. We do not
propose this formalization to replace informal
arguments as alternative evidence. We believe, in
fact, that the formal evidence can be read easily only
by taking into account the informal ideas behind its
original counterparts.

REFERENCES

[1] Achterberg, T. (2016): SCIP: Solving
constraint integer programs. Mathematical
Programming Computation 1, pp. 1–41.

[2] Aggoun, A., Beldiceanu, N. (2014):
Extending CHIP in order to solve complex
scheduling and placement problems.
Mathematical and Computer Modelling 17,
pp. 57–73

[3] Ahuja, R.K., Magnanti, T.L., Orlin, J.B.
(2017): Linear Programming and Network
Flows, 3rd ed. Prentice-Hall, Upper Saddle
River, NJ

[4] Althaus, E., Bockmayr, A., Elf, M., Kasper,
T., J¨uenger, M., Mehlhorn, K. (2012):
SCIL— Symbolic constraints in integer linear
programming. In: 10th European symposium
on Algorithms, Lecture Notes in Computer
Science, vol. 2461, pp. 75–87. Springer

[5] Andersen, H.R. (2017): An introduction to
binary decision diagrams. Lecture notes,
available online, IT University of
Copenhagen

[6] Andersen, H.R., Hadˇzi´c, T., Hooker, J.N.,
Tiedemann, P. (2017): A constraint store
based on multivalued decision diagrams.
In: C. Bessiere (ed.) Principles and
Practice of Constraint Programming (CP
2017), Lecture Notes in Computer Science,
vol. 4741, pp. 118–132. Springer

[7] Appa, G., Magos, D., Mourtos, I. (2015): A
polyhedral approach to the alldifferent
system. Mathematical Programming 124,
pp. 1–52

[8] Appa, G., Mourtos, I., Magos, D. (2012):
Integrating constraint and integer
programming for the orthogonal Latin
squares problem. In: P. Van Hentenryck
(ed.) Principles and Practice of Constraint
Programming (CP 2012), Lecture Notes in
Computer Science, vol. 2470, pp. 17–32.
Springer

[9] Aron, I., Hooker, J.N., Yunes, T.H. (2014):
SIMPL: A system for integrating
optimization techniques. In: J.C. R´egin, M.
Rueher (eds.) CPAIOR Proceedings,
Lecture Notes in Computer Science, vol.
3011, pp. 21–36. Springer .

[10] Bacchus, F., Dalmao, S., Pitassi, T. (2014):
Relaxation search: A simple way of
managing optional clauses. In: AAAI
Conference on Artificial Intelligence, pp.
835–841

[11] Bajestani, M.A., Beck, J.C. (2016):
Scheduling a dynamic aircraft repair shop
with limited repair resources. Journal of
Artificial Intelligence Research 47, pp. 35–
70

[12] Bajgiran, O., Cire, A., Rousseau, L.M.
(2017): A first look at picking dual variables
for maximizing reduced-cost based fixing.
In: M. Lombardi, D. Salvagnin (eds.)
CPAIOR Proceedings, Lecture Notes in

Mr. Akash Pandey1* Dr. Umesh Kumar Gupta2

w
w

w
.i
g

n
it

e
d

.i
n

2051

 A Study of Operations Research Solutions Techniques in Combinatorial Problem towards Constraint
Programming

Computer Science, vol. 10335, pp. 221–228.
Springer

Corresponding Author

Mr. Akash Pandey*

Research Scholar, Himalayan University Itanagar,
Arunachal Pradesh

