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Abstract – Many numerical identities are proved applying clever but informal combinatorial arguments. A 
formal representation is presented to prove these identities closely following these arguments. The main 
formal tool used to that end is, operationally, an abstract and axiomatic generalization of the Sigma 
notation (Σ), which is utilized for expressing and manipulating summations and counts. Operational 
properties are provided with algebraic properties that make it possible to perform different naturally 
important operations. In this paper we present a formal version and some more examples that show how 
to practically interpret combinatorial arguments used in literature. We present typical combinatorial 
evidence of the inclusion-exclusion theorem. Combinatory evidence of numerical identity is either that 
both sides of the given equation count the very same kinds of objects in two different ways or show a 
bijection between the sets that show up on each side of the equation. The two expressions must 
therefore be the same. The dream most combinatorialists make when they prove their identity is this kind 
of argument. Such arguments are generally informal and, it is likely to be safe to say, ad hoc, without a 
unified formal basis. 
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INTRODUCTION 

In this article we show a formal display that closely 
follows the appropriate combinatorial arguments, 
which proves this identity. After presenting formal 
notes and their fundamental algebraic 
transformations, we show how, in practice, 
combination arguments used in the literature to 
demonstrate a selection of identities with binomial 
coefficients and permutations can be formally 
interpreted. We shall give the typical combination 
proof of the theorem Inclusion Exclusion in particular 
in a formal version. Furthermore, some of these 
calculations illustrate how a recursive definition can 
be reached for resolving a counter problem, i.e. 
formally derived a recursive algorithm to solve the 
problem. The official tool used is known as an 
operational instrument. In the main, the Sigma (Σ) 
notation, used to express and manipulate 
summations and numbers, is an abstract and 
axiomatic generalization. Operations enable various 
natural operations with combinatorial significance 
because of their algebraic properties. Among these 
algebraic properties are: a way of splitting 
summaries with different divided separation criteria 
(a measure called conditioning) and the ability to 

map or transform the counted elements in a 
bijection to a variety of elements (basically, count 
and summation indices) (the essence of a 
combinatorial argument). In terms of graphical, 
symbolic and material object count, combinational 
arguments are generally expressed, such as paths 
along the rims of a grid, 'montane ranges," 
matched parenthetic parentheses, grid tiling by 
blocks, beaded necklaces etc. We modell these 
objects with discreet mathematical structures like 
the finite numbers, strings and finite sequences of 
numbers in order to officially formalize these 
concepts (possibly considered as circular). This 
formal device not only offers official support for 
expressing and reasoning ideas and evidence, but 
also enables the deduction of recursive functions to 
identify solutions to count problems. This method 
can be widespread to produce formal derivations of 
recursive algorithmic solutions through gradual 
refining of certain specifications. We also find this 
approach feasible to make automated evidence 
control of combinatorial evidence easier. 
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Schemes for Incorporating OR into CP  

CP‘s unique concept of a constraint governs how OR 
methods may be imported into CP. In order to reduce 
variable domains, the most obvious function of an 
OR method is to apply it to a constraint or subset of 
limits. If the restrictions include certain linear 
inequalities, a variable subject to such inequalities 
can be minimized or maximized, thus possibly 
reducing the domain of the variable. The problem of 
minimizing or maximizing is a linear programming 
(LP) issue, an OR staple. This is one example of 
OR's most common scheme: to relax the CP 
problem, in the form of an OR model, like an LP 
model. Relaxation solution helps to reduce the 
domain or guide the search. Other OR models that 
can play this role include linear (MILP) models 
(which can be relaxed by themselves), relaxation 
from Lagrangean and dynamic programming models. 
OR has also developed expert relieves for a wide 
range of ordinary situations and offers tools to relax 
globally. 

A CP solver has several advantages of relaxation. 
(a) it may tighten a variable boundary. (b) In the 
original problem, its solution may become feasible. 
(c) If not, the solution may be a promising guide for 
the search. (d) One solution can allow domains to be 
filtered in other ways, for example through cost 
reduction or Lagrange multipliers, or by dynamical 
programming examinations of state space. (e) The 
solution can deliver a binding value for optimal 
pruning of the search tree for optimisation problems. 
(e) More generally, by combining several limitations 
relaxed in a single OR-based relaxation process, 
global problems that are only partly captured by 
constraint propagation can be taken advantage of. 
The problem is broken down by other hybridisation 
schemes, so the CP and OR can attack the parts of 
the problem they most suit. To date, branch and 
price algorithms and generalizations of Benders 
degradation have been the most important schemes. 
Branch and price based on CP generate a column, 
i.e., the variables that are to be dynamically added to 
enhance the solution during a branch search. For the 
"row generation," decomposition is often done using 
CP; in other words, restrictions (goods) are 
generated that guide the main search method.  

 

 

 

 

 

 

Table 1: Sampling of computational results for 
methods that combine CP and OR 

 

 

PRELIMINARIES  

Throughout this text, a one-argument function 
application over a variable or a constant is denoted 
by an infix dot ‗.‘. To denote multiplications, 
generally, we will avoid the usual juxtaposition 
convention by using an explicit infix dot sign (·) due 
to the confusion caused by naming variables with 
more than one letter. By true and f alse , we 
denote, besides the boolean values, the obvious 0-
ary constant predicates. The following logical 
connectives are listed in order of decreasing 
binding power (those listed as a pair has the same 

precedence): ¬ denotes negation, ∨ and ∧ denote 
disjunction and conjunction respectively, and ≡ and 
6≡ denote equivalence and discrepancy 

respectively. As usual, the symbols ∀ and ∃ denote 
the universal and the existential quantifier 
respectively. 
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For set operations, we use the usual symbols for 

union (∪), intersection (∩), membership (∈) and 
inclusion (⊆). All other notations will be defined in the 
place where they are used. 

A. Operationals  

Summations may be interpreted as iterations of the 
addition operation. This view of iterated sums can be 
generalized to any associative and commutative 

operator ⊕ with advantages of unified notation and 
calculation through their generalized axiomatic 
description. The expression 

 

denotes the iteration of ⊕ over the values of the 
expression P.i for all the values of i belonging to the 
domain (or type) D and satisfying the range condition 
R.i. We call this kind of expression an operational on 

⊕. These expressions are also known as 
quantifications. Observe that in order to avoid an 
accumulation of parenthesis, we sometimes write 
(when it does not lead to confusion) R.i to denote 
application of expression R (considered as a 
function) to argument i. 

 

In order to keep some resemblance with the 
traditional notation we allow to write 

 instead of 

 instead of 

. To deal with a false range R.i, it 

becomes necessary that operator ⊕ has an identity 
in addition to the symmetry and associativity 
properties. The table above illustrates the unifying 
effect of this notation. 

Any occurrence of index i in the expressions P.i and 
R.i above, are said to be bound by the operational. 
Strictly, index i should be always annotated with a 
type to indicate the range of values it may assume; 
however, to avoid cumbersome repetitions, we may 
state just once the type of a certain index in the 
context of a calculation. In addition, the range is 
sometimes omitted when it is refers to the entire 
domain of variation of i; formally, this correspond to 
have the predicate true as a range. In this case the 
form of the operational is 

 

One more thing, the counting operational is 
somewhat different from the others. We introduce it 
as follows. 

 

could be considered ‗syntactic sugar‘ for 

 

Similarly, (#i ∈ D :: R.i) is defined as (Σi ∈ D : R.i : 

1) or |{i ∈ D | R.i}| (the cardinal of the set of 
elements in D that fulfill property R). 

B. Some algebraic properties of operationals.  

The operational unifying effect is not limited to 
notation. It is possible to give operations an 
abstract treatment in accordance with calculation 
style in order to easily manipulate the algebraic. 
Due to the fact that operations are defined as 
iterating applications of an associative and 
switched binary operator, properties are 
generalized which are generally only summaries. 
These properties are achieved every time the 
operations are well defined, even if an endless 
number of operations are involved. For example, if 
they converge in the case of summations. 

Being ⊕ an arbitrary associative commutative 
binary operator defined and taking values on a 
domain D, the following properties are valid for 

operationals of the form (⊕i : R : T) (with R, S 
Boolean expressions, and T an expression taking 
values on D). In the following, we suppose as 
understood that indices i, j take all their values on 
D. 

Splitting. 

 
whenever ranges R and S are disjoint. 

Formally, . 

Mapping. 

 
whenever f is a bijective function from E to D such 
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that for all i in D fulfilling 
R. 

Nesting.  
This requires index j not appearing in R as a free 
(unbound) variable. 

Empty Range.  This rule 

requires ⊕ to have an identity element u.  

One Point. 

 is the 
expression obtained from substituting K for all 
occurrences of i in T. 

For the counting operational fulfills similar properties, 
here R, S, T must be Boolean expressions. 

Splitting.  
whenever ranges R and S are disjoint. 

FORMAL VERSIONS OF SOME 
COMBINATORIAL PROOFS  

In this section we present different examples of 
calculational proofs of numerical identities inspired 
by the corresponding combinatorial proofs as they 
appear in the literature. For the sake of easing 
human reading, these proofs are rigorous but not 
entirely formal. For instance, the mention of the 
axioms for operationals in the explanations for each 
step of our calculations just hints the main ideas to 
justify them. In particular, we leave to the reader to 
justify that in the mapping steps, the corresponding 
transformations are in fact bijections from one range 
of values to the other. 

A. Counting Permutations  

We define Pn as the number of permutations of the 
elements in [n]. Formally, we represent a 

permutation in  as a non-repeating sequence q in 
sq[n] of length n, that encodes a bijection mapping 

any . Consequently, we define pm[n] as 

where nrep.s means that 
the sequence s does not repeat its elements. 

For the sake of easy manipulation of permutations, 
we define, for a (finite) sequence s of integers, its 
normalization with respect to the deletion of its 

element in position as follows 

 

meaning that s.i is removed from s, elements of s 
less than s.i are left unchanged, and elements bigger 
than s.i are subtracted by 1. Here, t=sb1(s, m), with 
m a value not occurring at s, is equivalent to the 
formal expression 

 

To remove an element of a permutation p of the 
elements of [n] in position i implies to shift, one 
position to the left, the elements to the right of the 
element removed, as well as subtracting 1 from all 
the elements bigger than it. This way, we bijectively 
obtain a permutation of [n−1]. 

Expressing  it is easy to 
calculate. Clearly P1 = 1. For n>1 we have 

 

 

Observing the obtained recursive equation, we 

conclude that . We have proved 
the following proposition.  

Proposition 1:  

B. Binomial Coefficients  

We define the arithmetic function   as the only 
solution to the functional equation on X a 

 

It is not hard to prove that n k  corresponds to the 
number of subsets of size k, of a set of n elements 
(for instance [n], the set of integers from 1 to n). 
This shows the existence of a solution, its 
uniqueness is easily proved by induction. 

 

Proof : Let 

Considering the 
cases defining equation (0), we note that the cases 
k >n, k= 0 and k=n are pretty simple, since in those 
cases, there is just one subset or none at a 
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This proves that  is a solution for X in 

equation (0), and therefore,  

The two previous propositions show how to formally 
obtain a recursive definition for the solution of a 
counting problem. Next proposition correspond to 
Identity  

 

 

CONCLUSION 

This study was to demonstrate how to give the 
combinatorial arguments the formal content which 
we believe to have achieved. We did this to find 
ways to facilitate their automatic testing. We do not 
propose this formalization to replace informal 
arguments as alternative evidence. We believe, in 
fact, that the formal evidence can be read easily only 
by taking into account the informal ideas behind its 
original counterparts. 
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