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Abstract — We consider the accompanying imperative fulfillment issue: Given a set F of subsets of a
limited set S of cardinality n, and an assignment of intervals of the discrete set {1, . .., n} to each of the
subsets, does there an exist a bijection f : s —{1,....n} to such an extent that for every component of F, its
picture under f is same as the interval alloted to it. An interval assignment to a given arrangement of
subsets is called plausible if there exists such a bijection. In this paper, we describe doable interval
assignments to a given arrangement of subsets. We at that point utilize this outcome to describe
matrices with the Consecutive Ones Property(COP), and to portray matrices for which there is a stage of
the rows with the end goal that the columns are altogether arranged in rising request. We additionally
present a portrayal of set frameworks which have a possible interval assignment.

Keywords: Constraint, Satisfaction, Matrices, Cop.

INTRODUCTION

The COP is an intriguing and basic combinatorial
property of binary matrices. The COP shows up in
numerous applications; information recovery, DNA
physical mapping, grouping gathering, interval graph
acknowledgment, also, perceiving Hamiltonian cubic
graphs. Testing if a given graph is an interval graph,
and testing if a given cubic graph is Hamiltonian are
uses of algorithms for testing if a given 0-1 matrix
has COP. The maximal coterie vertex rate matrix is
tried for COP to check if a given graph is an interval
graph . Thus, from a cubic graph is Hamiltonian if the
matrix A + | has a change of rows that leaves at most
two squares of consecutive ones in every column. An
is the nearness matrix of the given graph what's
more, | is the personality matrix. Testing if a matrix
has COP is additionally connected for building
physical maps by hybridization and testing if a
database has the consecutive recovery property To
request a stage of the rows with the end goal that
every column is arranged is a characteristic
augmentation of the COP. For 0-1 matrices this
inquiry is contemplated as the idea of 1-drop
matrices. Past work. The principal notice of COP, as
indicated by D.G. Kendall [8], was made by Petrie, a
prehistorian, in 1899. A few heuristics were proposed
for testing the COP in before crafted by Fulkerson
and Net who introduced the main polynomial time
algorithm. In this manner Tucker displayed a
portrayal of matrices with the COP dependent on

certain illegal matrix arrangements. Corner and
Lueker proposed the principal straight time
algorithm for the issue utilizing a ground-breaking
information structure called the PQ-Tree. This
information structure exists if a just if the given
matrix has the COP. Hsu displayed another straight
time algorithm for testing COP without utilizing PQ-
trees. All the more as of late in 2001, he presented
another information structure called PC tree as a
speculation of PQ-Tree. This was utilized to test if a
binary matrix has the circle Ones Property (CROP).
Another speculation of the PQ-tree is the PQR tree
presented by Meidanis and Munuera. This
speculation was a decent expansion of the
methodology of Booth and Leuker so that PQR
trees are characterized notwithstanding for
matrices that don't have the COP. Further, for
matrices that do not have the COP, the PQR tree
calls attention to explicit subcollections of columns
in charge of the nonappearance of the COP. In
2003, a relatively direct time algorithm has been
proposed to develop a PQR-tree. Our Work. Our
inspiration in this work was to understandl the
Consecutive Ones Testing (COT) algorithm due to
and to extend it to finding a change of the rows of
matrix with the end goal that the columns are all
arranged. Obviously, to sort only one column, we
can without much of a stretch recognize a group of
row stages that accomplishes the arranging. So for
every column in a given matrix we can relate a lot
of arranging changes. The inquiry presently is
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whether the intersection of these sets, one for every
column, is vacant or not? In this paper we recognize
a characteristic concise portrayal of the arranging
changes of a column. This prompts the inquiry that
we present in the abstract: Given an interval
assignment to a set framework, is it doable? We at
that point present a fundamental and adequate
condition for an interval assignment to be practical.
Specifically, we demonstrate that an interval
assignment to a set framework is doable if and just
on the off chance that it saves the cardinality of the
intersection of each combine of sets. While a
plausible interval assignment should fundamentally
fulfill this property, shockingly we don't discover this
portrayal in the writing, certainly not expressly to the
best of our insight. We utilize this portrayal to
describe matrices with the COP, and portray
matrices that whose columns can be arranged by a
row stage. We additionally demonstrate a vital and
adequate condition for a plausible interval
assignment to exist. Our verifications are largely
useful and can be effortlessly changed over into
algorithms that keep running in polynomial time in
the information measure.

A critical outcome of this work is the thing that we
see as the modularization of COT algorithm due to
Hsu. Two fundamental modules in the COT algorithm
are to discover an attainable interval assignment to
the columns of a 0-1 matrix, and after that to
discover a change that is observer to the plausibility
of the interval assignment. Our investigation in this
paper can likewise be viewed as an alternate point of
examine, but along the profession started by
Meidanis et al. In their work, they think about the set
framework related with the columns of the matrix.
Specifically their outcomes discover a conclusion of
the set framework which additionally has the COP if
the given set framework has the COP. In this paper,
we adopt another regular strategy to consider the set
framework related with the columns of the matrix. We
think about the arrangement of row stages that yield
consecutive ones in the columns of a matrix. We at
that point ask how this set gets pruned when another
column is added to the matrix. During the time spent
noting this inquiry, we utilize the deterioration of the
given matrix into prime matrices as done. Our work
likewise opens up normal speculations of the COP.
For instance, given a matrix is there a change of the
rows with the end goal that in every column the rows
are apportioned into at most two arranged
arrangements of consecutive rows?. This would be a
fascinating method to order matrices, and the
combinatorics of this appears to be extremely
fascinating and non-unimportant. This would likewise
be a whiz combinatorial speculation of the k-drop
property for 0-1 matrices which is considered in and
references in that

CHARACTERIZATION OF
INTERVAL ASSIGNMENTS

FEASIBLE

In this paper {Al"" "Am} is a set of subsets of

{1, by gy T |4, =i = m

. A,
assignment to {1t
l1<i=<mB S,

. E.
are consecutive}. “tis used to denote the interval

_ L1<i< .
assigned to dpl=is m Further, an interval here
is a set of consecutive integers from the set
{77}, An intersection Cardinality Preserving

Interval Assignment (ICPIA) to {Ai’ "'qm} is a

An interval
Am} is the set {(Af’g

’ﬂ'}, and elements of B,

set of ordered pairs {(A" )

} such
that for every two sets 4 and
Ajla;na] = |5, n 5|

We also use the
ordered pair (P’Q) to denote the assignment of

interval Q to theset P. Since in each ordered pair

£.0, [P =lol

all permutations of {1’

, we also use (P’ Q) to represent
’ﬂ} such that the set P is
mapped to the interval Q. An interval assignment
{(AE-,BE-)Il ZiZm

thereis a permutation of {1’

= 1= . .
each 1= L_m, the image of 4 under the

} is defined to befeasibleif

ﬂ} such that for

Lo . B, .
permutation is the interval ~*. Two intervals are
said to bestrictly intersecting if theirintersection is
non-empty and neither is contained in the other.

Theorem 1. If an interval assignment
{("ilf"gf)|1£ ES™ i feasible, then it is an
ICPIA.

Proof.Since the interval assignment
{(‘Llf*‘gf)|1 SIS o feasible, there s
permutation Psuch that” (j:1 H)= Bplsix m
SinceCr is a permutation it follows that |,a1 | = |B l

Further, for the same reason for aII
1<4ij<m,a(4,U4;)=BU B; and
|4, nA.| =|B; n B
therefore 4 71, Consequently,
the interval assignment is an ICPIA. Hence our
claim.

FEASIBLE PERMUTATION FROM AN ICPIA

We now show that ICPIA

{(Ai,Bijlliiim

given an

}, there is a permutation a of
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(1,...,71} such  that cr(ﬂz.]=5:-,1£i£m.

Without loss of generality, we assume that the
ordered pairs in the ICPIA are indexed according to
the order obtained by sorting the left end point of the

intervals (Efs) in the ICPIA, and ties are broken by
sorting in ascending order of right end points. In

other words, the interval B, has the smallest left end

point among all intervals and the interval (B”-”l) has
the largest left end point. Before we outline the
algorithm for constructing a feasible permutation
from the ICPIA, we prove the following two crucial
lemmas.

Jq.ﬂ, BH
=)
ICPIA.

Then,

Lemma 1.Let (‘41’ 51), (
beelements of an
|4, N4, n A;||B, n B, N B,|

Proof. If for any two intervals the intersections
areempty, then the corresponding sets haveempty
intersection, and therefore, it follows that the
intersection of the 3 intervals is empty, and so is the
intersection of the 3 sets. The claim is true in this
case. Therefore, we consider the case when the
pairwise intersection of the intervals is non-empty. By
the Belly Property, if a set of intervals are such that
the pairwise intersection is non-empty, then the
intersection of all the intervals in the set is also non-
empty. Further, it is also clear that if three intervals
have a non-empty intersection, then one of the
intervals is contained in the union of the other two.

c
Without loss of generality, let Bs < B, U 32,
therefore
|B,UB,UB;| =|B;UB,| = |4, UA,| =
|4, UA, UA,|

Further it is also clear
that

|B, N B, N B3| = min{|B, N E,|,|B; N
Bsl. By N By}

Without loss of  generality, let us
assumethatlﬁ1 N B, N Byl = 1B, N 5'3|‘ Applying
this to the Inclusion-Exclusion formula for
|B, U B, U By

< , we
get
|By U B, U Bs| = |B,| + [B,| + |B;] —
|B, N B,| — |B; N Byl
The r.h.s is in turn equal to

|A1| + |J£12| + |A3| — |1511 nﬁlzl — |A1ﬂAH| ==

{4, U A, 1\A, | + 14,1 =14, UA, U A4
Therefore, it

thatl‘£11 UA, Uds| = [B;UB, U Jr5"EI||:rom, the

given hypothesis and the Inclusion-Exclusion formula
it now follows

follows

|4, N4, NnA;| = |B; N B, N Byl

that Hence the
proof.

Corollary 1.Let (Al’ El), (‘42’52), (Aarga)
beelements of an ICPIA. Then,

1(41\4;) N 45| = [(B,\B) N Bal'

Proof.
Clearly,

|(A,0\A4;) N Azl = (4N (4, n4,)| =
l4; NA;l = (A, nA,) N Al

From lemma 1 we know
thatl[fllnf‘l:] N As| = (B, N By) nE"al, and
thatlJL11 ﬁﬁlal - |51 n 33| follows from the fact
that we have an ICPIA. Therefore, it follows
that

|(By N By) N Byl = |(B,\By) N Bl
. Hence the corollary.

Algorithm 1 Permutations from an ICPIA of M
Let Pr = A1, Q1 = By

Let ITo = {(A:, B:)|1 <i <m}

while There is (Py, 1), (P2, Q2) € IT; 1 with @y and @3 strictly intersecting do
I = -\ {(P1, 1), (Pe, Qo)
;=1 u{(PAnP,QinQe), (P \ P, Q1 4\ Q2), (P Pr,Q2\ Q1) }
i =it

end while

IIr=1my

Return IT;

. I
In  Algorithm 1, I represents the set
{cr:{l,....,n}—>{1,....,n}|cr

o(A) = B,Y(A,B) €1,

is a permutation,
and {

IT .
that =™ represents a set of permutations of the
rows such that the ones in each column are
consecutive.

}. We now prove

| =
Lemma 2.At theend of the j-th iteration, I= ﬂ,
of the while loop of Algorithm 1, the following

three are invariant.

. . . =J P
- Invariant I @ is an interval for each (P’ Q) 1

1Pl =@l

- Invariant II: for each (P’ Q) €n;

¥ ' " "
- Invariant Ill: For any two(P @ ),(P ' )E H—’

|P'nP|=|Q" ng|

Proof. The proof of the lemma is by induction on j,

which is the number of times the while loop has
executed. For 7 T ﬂ,
5:.)|1 i< m|}_ Al the

by definition, My

{(Ai’ invariants hold
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because we are dealing with an ICPIA. Therefore the
base case is proved. Let us assume that the lemma

holds for 7 —
j

1. Now we now show that the lemma

holds for *. First, invariant | holds due to the following

F, Q)E
hypothesis @
Il also holds. If (P Q)

Jand H—-"‘i, then by the induction

|P| = 1@l

reason: If (

is an interval , and invariant

4‘ , but not in

€ ﬂ}‘i, then it means that (F’Q) is one of the

(v,

following three pairs for

PE’QE €01 | such that %tand P2are strictly
PL0PLQ: N Qs Pi\PLQ:N:,

some

intersecting: (" *

or (PE\PPQ:\Ql). By invariant 1l of the induction
hypothesis, it follows '[ha'tlp| - lQl. Since '[heQ1
and @ are strictly intersecting, it follows that Q is an

interval. To prove invariant Ill, let us consider a pair
Q' pLo ., EIL IT.
&) F-QH = i1, then

. . . . eI _
invariant 11l holds. If one of them is not in -1
then it is one of the following three pairs for some

. If both arein €

(Pl’Ql), (PE’QE) €1 here?t and @2 are
strictly  intersecting: (P1 NP0 N Qg), or
Pl\P::QﬂQ:), or ( P2\Py,Q; \Ql Now applying

lemma 1 and corollary 1, it follows that in this case

: Q' 0 e [l
too for each pair (P e )1(F‘ @ ) )
[P'nP|=¢'ng|

Therefore the induction
hypothesis is proved. Hence thelemma.
Theorem 2.Let {("ﬁlf’ﬁf)|1 sis ml}be an ICP1A.

Then, there is a

permutationm Lsn} = (L Il}such
that? (4 = B
i .
Proof.Consider output by Algorithm 1 for
{(‘qf’ 3:.)| l=sis m}. For the sake of ease, we add
Ao Boy (o T phereo = B0 =4 1 Clearly,
1,@1 Fﬂ,Q

from the algorithm, for any two ( ), ( <)
EH, either @ and @ are disjoint, or one is

contained in the other. In other words, they cannot

be strictly intersecting. So to further refinen, we
consider the following tree, which can be called a
containment tree. The nodes of this tree represent

FQy B e FrQy ang F2%) pe

theelements of H associated with two nodes. There

Ql)

to the node corresponding to ( *’Q*) if and only ile

¢z

is an edge from the node corresponding to ( Py

is the largest interval that contains *<, among all the

ordered pairs in H. The root of the tree is the pair

A

( '}’B'}). Since thleS are intervals, this data

structure is a tree which we denotebyT. We now
refinen as outlined in Algorithm 2 using the function
call Post-Order-TraversaI(T’ (4o, BE':]). Let the

resulting set be””'i which is a set of ordered pairs
(Fo sy, =
( E-’QE) E l|!TEI

™ is a finite number. In an ordered pair
na» Qs is not necessarily an interval.
However, for any two (Fi’ Qi), (PE’QE)
EN .. |P,NE|=|Q,N@,|=0

and *

|'Pi| = |Qz|

and
= j=
. The other property is that lsj=m

. A; . B, :
the image of “~Jremains 7. The reason is that

2B . . .
each (A 7) is only broken into smaller sets in
both Algorithm 1 and Algorithm 2. Therefore, any

?;

maps Pfto

permutation  that for each
E I, i .
( E’Qf) nd  gatisfies all the constraints
- A B . [1Zi=m
specified by the ICPIA {(* E)| I
Il . :
Hence "#md represents a family of permutations
such that for each permutation
g,o(4,)=B,1=i=m
Algorithm 2 Permutations from /I obtained from Algorithm 1
function Post-Order-Traversal{ T root-node)
if (root-node is a leaf) then
return
end if
while (root-node has unexplored children) do
next-root-node = an-unexplored-child-of-root-node
Post-Order-Traversal( T, next-root-node)
end while
if (root-node has no unexplored children) then
Let (P, Q) denote the element of IT associated with root-node
Let (Py, Q1) ... (FPe,Qr) be the pairs associated with the children of root-node

o= {(PQ)}
M= Tu{(P\(PiU...UP),Q\(1U...uQk))}
return

end if

Theorems 1 and 2 together prove that an interval

assignment {(}lf”r‘:ff)| l=is m} is feasible if and
only if it is an ICPIA. We now use this result to
characterize matrices whose rows can be
rearranged to obtain desired interval-properties on
the columns. The basic idea is to associatea set
system with each columns based on the desired
property, and then test if the resulting problem
instance has an ICPIA.
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CHARACTERIZING MATRICES WITH THE
COP

Definition and Notation:An' An matrix M with O-
1 entries is said to have the consecutive ones
property (COP) if there is a permutation of the rows
such that in the resulting matrix the ones occur
consecutively in each column. Such a permutation is
said to leave consecutive ones in the columns. Our
characterization of matrices with the COP provides a
new analysis of a recent Consecutive Ones Testing
algorithm.For

1<i<m, A ={p|M, =1}

each “let Let

T = |ﬂfldenote the number of ones

column. Let By={Ll+1,.,ltr—

an interval assigned to the i-th
1=1=<n

in thei-th

1} denote
column,

where . From the results of the previous
section, the following theorem holds as an
application of the results obtained in the previous
section in a more general setting.

Theorem 3.A 0-1 matrix M has the COP if and only if

thereexists an ICPIA{(AE" Bf}ll =i= m}_

The problem of finding a permutation of the rows of a
matrix such that each column is sorted in ascending
order can be solved by creating a natural set system
on the same lines as outlined for testing the COP.

STRUCTURAL CHARACTERIZATION OF
MATRICES WITH AN ICPIA

In this section we address the question of whether a

= 1=
given set system { i S {1 ,n}ll =t= m} has
an ICPIA. Quite naturally we view the given set

system as a’ Km binary matrix n M, thej-th

A M.
column corresponds to the set” ¥ and % if and only

LT EA. C M..=10
if I, otherwise ¥ .Note that the columns

of M are distinct. In the rest of this section, we say

M has an ICPIA if there is an ICPIA
(AvByll<i<m A ={p|M, =1}

also refer to thej-th column of M as theset AJ'. This is
the word set in a matrix is used to refer to the set
associated with a column. We recall the notion of
matrix decomposition introduced .

that a matrix

} where

An undirected graph on the columns of M: With the

. M . .
given matrix , associate an undirected graph

G [M] where the

vertices  correspond to

17.
We assume that vertex i

vi} € E(G(M))

A v,
corresponds to set ~ L{ ¥ if an only

if the corresponding sets intersect and neither is
contained in the other. A maximal set of columns of

is called a prime submatrix of if the

is connected. Let us

My...M
denote the prime submatrices by *’ L

Clearly, two distinct matrices have a distinct set of

corresponding subgraph ofG

columns. Let Im:'l“"ff:]be the set of columns in

thesubmatrix Mf. We also introduce the notation for
the support of a prime sub-matrix

M;; supp(M;) = U Aj.
JjEcol(M;)

For a set of prime sub-matrices X we define

supp(X) = U supp(M).

MeX

A Partial Order on the prime sub-matrices:
Consider the relation << on the prime sub-

ML M .
matrices """ Pdefined as follows:

{(M ,MJ')l‘qSEtS €M s contained
s'e M}'}U {M.M)1<i=< P}
@)

in a set

(M, M) e<< ,
Lemma 3. Let 1 . Then there in set

) . ) c [
S € M} such that for each SEM,S <S5 .

M. M.
Proof. Since ( V' J)E{{

, it follows, by definition

. S'eM; SEM;
of {{, that there is an 4 and 4 such
scs’ M
that . We want to prove that each set of "¢

I

is contained in ~ . We prove this by contradiction.

T € M, be the first vertex in a path in G(M,)
! i
from S €M, such that Tes . LetT €M be the
. T T'cs’
neighbor of on the path.Clearly, C

M. . . . .
I, and neither is contained in the

!
other. Therefore,T ns =0

! TeM. _ . I

TS . Therefore, 1. This is a contradiction
to the fact that two distinct prime sub-matrices have
distinct sets of columns. Therefore, our assumption

T E
S'.Further

. By our assumption,

of theexistenceof T is wrong. Hence the lemma.

Lemma 4. For each pair of prime sub-matrices,

sither (M, M;) e<< or (M, M,) e<<
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Proof. The proof is by contradiction. If we assume

M, M, e<<

that for two distinct “and 7, ( 7) and

M, M, |
(7 z)E{‘{, then from lemma 3 that there is

5 M. 5'e M
an

t such that each i js contained in S

Since the columns of Mare distinct, this is a

. _— M.
contradiction to the definition of =~ *. Therefore, our
assumption is wrong. Hence the lemma is proved.

Lemma 5_|f[Mf’MJ') E{{and(Mi’ ME) E::::::,

then(Mf’M"j €==

Proof. This follows from lemma 3 and the definition of

: M., M.
containment. : J‘)E{{“and
(M,,M,) E<< then either

(M;,M,,) e<<or (M. M;) E<<

Lemma 8.If (

Proof. The proof is by contradiction. Let us assume
M., M M, M.
that both ( 7" %) and ( ¥ /) are not in ==

M are prime sub-

. M;
Along with the fact that 7 and

matrices, this and

supp (M)

implies  that
are disjoint. Further, from lemma 3 we

know that - PP (M;) is strictly contained in
Supp [ijand supp (M"]. This is a contradiction to

the conclusion that ~ P F (M;) N supp(M,) = 0

. . M. M
which follows from the assumption that ( #°~ ¥) and

M, M. .
(¥ dyarenotin == Hence the lemma.

Theorem 4.::{is a partial order on the set of prime

sub-matrices ofM. Further.it uniquely partitions the

prime sub-matrices of M such that on each set in the
partition << induces a total order.

Proof. This follows from the previous four lemmas

and the fact that == is reflexive by definition.

Lemma7.A 0-1 matrix M has an ICPIA if and only
if each prime sub-matrix has an ICPIA.

Proof. If M has an ICPIA, then by definition each
prime sub-matrix has an ICPIA. We now prove the
reverse direction by construction. Let us assume that

. L A
eachM“’ l=i=p has an ICPIA. Let Koo Xy be

the partition mentioned in theorem 4. From the
definition of a prime sub-matrix and the definition

supp (X,) n supp(X,) = O,

ofd:{“it follows that or

= =
each1 =ErESS l. Therefore, to complete our

construction, weidentify an interval
= k = .
I(X’{j’l =k= i, and then prove our claim for a

generic set in the partition. The interval [(X) is

(X, r(%)]

written as
Here

1(X) = 1,r(%) = IX%) + lsupp (Xl -1
1=k= i, +“:Xk:]=T(XJ{—1:]+ 1
2=k= }'. Clearly, I(X) is the interval which will
contain the intervals assigned to the columns in the

X’{. We

r

and for

matrix formed by the prime sub-matrices in

next prove the claim for a generic set, Say Xk, in

» My, i s Mk .
the partition. Let % be the sink to

source order of the prime sub-matrices in theset
X ' .
k. Here!* denotes the number of prime sub-

matrices in X". From the definition of did:,for

2= r = jk supp(M,,)

each is contained in at

: ﬂJFr—l}k :
least one setin - . Therefore, it follows that

supp (X)) = mPp(Mik:]. For the construction,
we associate an interval with each prime sub-

X Forjkzrzz,

matrix in Let Cri denotethe

. . M _
set of intervals assigned to those sets of ‘" Dk

which contain = “PP (M”"j. We define

1(M,) = ﬂ I.
IECTk

The interval associated with My, is
I(Mlk:] = [l(]fkj,l()fk:] + |supp[M1k]| - 1].F

= = 7 . :
l=r= }k, let us consider the interval
I

obtained by taking the union of intervals in an

M?‘k; we have this by the
[I'| = |supp (M) |

ICPIA associated with
hypothesis. We know that
since[fis the set of intervals obtained from anICPIA
assigned to the sets in M’"". Further, for each
1= 7 = jk, | (supp (M) < 1(M])]

Therefore,Ilrfl = ”(M”"jl. To complete the
construction, we order theelements of from the
smallest point to the largest point, and map thei-th
rank element of f to thei-th rank element

ofI[M"k]. Clearly, this bijection takes each interval
in the ICPIA given by the hypothesis and yields an
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ICPIA that is completely contained in I(M”kj. This
construction yields an ICPIA for the prime sub-

. X . . .
matrices of “'*¥ such that each interval in this

assignment is contained inI(X"j. Consequently, this
yields an ICPIA for M. Hence the reverse direction is
proved, and consequently the lemma is proved.
AN ALGORITHM FOR FINDING AN ICPIA

Here we show that it is possible to find an ICPIA to

the columns of a given binary matrix = in polynomial
time, provided there is one. The algorithm 3 is based
on the structural characterization described above in
this section and the algorithm 4. In algorithm 3 the

I I
function ICPIA("'I"er (M j) assigns an ICPIA to a
!

. . M .
prime sub-matrix in
I _ I I
theintervaI[(Mj_ [2(M7),r(M :]] Basically, the
¢ r
function ICPIA[M’[[M ) is a loop that calls
I

Algorithm 4 for each column of M .

Algorithm 3 Algorithm to find an ICPIA for a matrix M

Identify the prime sub-matrices. This is done by constructing the striet overlap graph and identify connected

components. Each connected component yields a prime sub-matrix.
Construct the partial order << on the set of prime sub-matrices.
Construct the partition X1,..., X1 of the prime sub-matrices induced by << and find I(X¢).
Construct the total order on each set in the partition.
for (k=Tk<lk++) do
Let T(Muk) = [I(Xx),{{Xk) + supp(M1x) - 1]
TCPIA(Mu, I(Mik))
for (r=2i7 < jijr++) do
Construct Cry from the ICPIA assigned to sefs of M qi.

Let (M) = [ 1
I

ICPIAM, I(M,,))
end for
end for

1 P
In algorithm 4, theelements of the set 5% 57]
I

are the sets corresponding to p columns, of * | that

have been assigned an ICPIA among them. Let this
..., I7} 5!
ICPIA be . Further, let™ be the set such
¥

that intersect with it have a
)

that the sets of

pairwise non-empty intersection. The interval

' ' ' 1) _
assigned to S is[i(M ) 1(M) + 157 1]. Now,

let S denote the set corresponding to thej-th column

such that S
Shi=i<yp

has a non-empty intersection with

i i
some and SEshst e 5. The
. . . I
is assigned an interval

ICPIA for

algorithm 4 describes how S
1 P

such that LR ’I},

(s%,....,55.1}

is an

Theorem 5.Algorithm 4 outputs an ICPIA to a prime
v

¢

matrix iff there is an ICPIA forM

Proof. The only-if part of the theorem s
straightforward.We now show that if there is an

¢
ICPIA for M , then Algorithm 4 will indeed discover

)
for each set 5, there is
SnT =+ El' and S

it. The key fact is that in

Te M

another set such that and

are not contained in each other. Due to this fact,
¥

there areexactly two ICPIAs for . The two distinct

ICPIAs differ based on the interval assigned to 51,

see Algorithm 4.If It is assigned to Si, then we get

one, and the other ICPIA is obtained by_ assigning L

i
to 51. Fbr each subsequent set, say S , the interval
to be assigned is forced. It is forced due to the fact

i
that the interval assigned to S is based on the
i i i bl
interval assigned to S , wheres n STnST# E',
i i i i

and“j €5 , and S'ES . Given the fact that the
algorithm is anexact implementation of these
observations, it follows that Algorithm 4 finds an
ICPIA if there is one.

CONCLUSION

We have presented the thought of an ICPIA
formally and have demonstrated that an interval
assignment is practical on the off chance that and
just on the off chance that it is an ICPIA. We at that
point utilize this perception to describe matrices
that have the consecutive ones property, in this
manner giving a more up to date comprehension of
Hsu's algorithm for COT. This combinatorial seeing
additionally prompts a portrayal of matrices whose
rows can be permuted with the goal that every
column is arranged. At long last, we have
additionally introduced an algorithm to test if a set
framework has an ICPIA utilizing approaches
created by.
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