

Empirical Study on Activity and Evaluation of Chest and Back Muscles with Reference to Volleyball

Piyush Kumar Chunilal Patel*

Assistant Professor in Physical Education

Abstract – *EMG signal amplitude permits acquiring information of bioelectric movement and muscle enactment time. Electromyography can be utilized as an apparatus for target assessment of the competitor state, help justify the advancement of sports method, test the adequacy of sports preparing and help build up development designs for various populaces of competitors. What's more, utilizing the surface EMG can likewise screen parameters for diminishing danger of injury or advancement in recovery, bolster recovery and health, recognize existing development remunerations and shortcomings of the kinematic chain, which increment the danger of player's injury, bolster re-training development designs after wounds to guarantee right enactment key muscle gatherings, which lessens danger of player's injury or decrease of entanglements after injury. The Purpose of the investigation was to EMG Analysis of Chest and Back Muscles and their Relationship with the Performance of Jump Tennis Service in Volleyball. Sampling Methods: Subjects were chosen based on purposively random sampling method. Sampling Size: An aggregate of 12 male expert Volleyball players from Haryana, India were chosen for the examination. Units of Observation: Observations were made on the accompanying Variables/substance: Pectoralis Major (PMJ), and Trapezius (TP). Standard Measures: Muscles exercises amid jump tennis service in volleyball were estimated by Neuro Trac Myo Plus 4. The data was recorded in small scale volt (μv). Statistical Techniques: The concerned data was dissected by utilizing clear statistical so as to electromyography investigations of chest and back muscles amid executing the jump tennis service in volleyball.*

Keywords: *Electromyography, Analysis, Chest, Back, Muscles & Volleyball*

INTRODUCTION

► EMG- Electromyography

Electromyography (EMG), the chronicle of electrical activity in muscle, ought to be viewed as an expansion of the clinical examination. It can recognize myopathic from neurogenic muscle wasting and weakness. It can identify irregularities, for example, chronic denervation or fasciculation in clinically typical muscle. It can, by deciding the dissemination of neurogenic anomalies, separate central nerve, plexus, or radicular pathology; and it can give steady proof of the way physiology of fringe neuropathy, either axonal degeneration or demyelization. EMG is a compulsory examination in engine neuron disease to exhibit the boundless denervation and fasciculation required for secure analysis.

Electromyographies are skilled at translating both the presence of muscle activity and the sound of the activity transmitted through a loud speaker. Typical

resting muscle is quiet. Patients frequently experience issues totally loosening up a muscle. The motor unit activity related with fragmented relaxation is recognized from irregular unconstrained activity by its rhythmicity. Motor units when previously enrolled or on the purpose of being de-selected flame normally at 6– 10 spikes for every second. Voluntary firing brought about by inadequate relaxation can regularly be quieted by inactively changing the stance of the limb or by slight enactment of the antagonist. Voluntary motor units never fire as single detached releases, a helpful point in recognizing them from fasciculation.

When translating EMG data it ought to be underlined that while the EMG amplitude correlates sensibly well with muscle compel for isometric compressions, it doesn't correspond well with muscle drive as muscle constriction speeds increment, or amid strong weariness (the two of which happen in sport). By the by, EMG investigations are useful in deciding the planning and amount of muscle actuation all through a given

development. Shoulder muscle activity in furthest point sports, explicitly: baseball pitching, American football tossing, windmill softball pitching, the volleyball serve and spike, the tennis serve and volley, baseball hitting, and the golf swing. A large portion of the developments that happen in the previously mentioned sports include overhead tossing sort developments. Shoulder EMG data in the writing are unmistakably increasingly broad for overhead tossing exercises, for example, baseball pitching, contrasted and other furthest point sports that don't include the overhead tossing movement, for example, baseball hitting. Thusly, quite a bit of this survey centers around shoulder EMG amid exercises that include the overhead tossing movement. To help better decipher the relevance and seriousness of shoulder EMG data, EMG data will be incorporated with shoulder joint kinematics (straight and precise shoulder removals, speeds and increasing velocities) and energy (shoulder powers and torques) when these data are accessible.

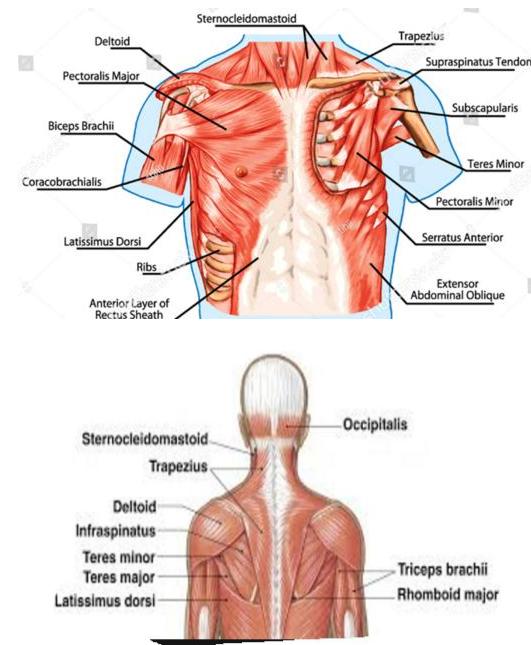
In human life structures, the trapezius is one of two expansive shallow muscles that broaden longitudinally from the occipital issue that remains to be worked out lower thoracic vertebrae and along the side to the spine of the scapula (shoulder edge). Its capacities are to move the scapulae and bolster the arm. Pectoralis major is a thick, fan-formed muscle, which makes up the main part of the chest muscle. It lies under the bosom. It serves to flex, expand, and turn the humerus, the long bone of the upper arm.

OBJECTIVES OF THE STUDY

- ✓ To discover the muscular involvement of chest and back muscles amid executing the jump tennis service in Volleyball.
- ✓ To discover the connection between muscle activity of chest and back and execution of jump tennis service in Volleyball.

RESEARCH METHODOLOGY

Coverage/ Selection of Subjects


The investigation was kept to Haryana, India. Sampling Frame: Subjects were chosen as a sampling outline from Haryana, India and their age was extending from 16 to 28 years. Sampling Methods: Subjects were chosen based on purposively random sampling method. Sampling Size: A sum of 12 male professional Volleyball players from Haryana, India were chosen for the examination Units of Observation: Observations were made on the accompanying Variables/substance. Pectoralis Major (PMJ) and Trapezius (TP).

Criterion Measures

Muscles exercises amid jump tennis service in volleyball were estimated by Neuro Trac Myo in addition to 4. The data was recorded in smaller scale volt (μV).

Data Collection

The essential/direct data was gathered from 12 male expert Volleyball players From Haryana, India. The previously mentioned instruments and procedures for collection of different classes of proposed data were utilized.

Figure 1 Chest and Back Muscle

The data for the chose muscles was gotten with the assistance of the instrument Neuro Trac Myo in addition to 4 worked by the specialist at the execution of jump tennis service test. Prior to the genuine testing, the subjects were given a total show of each test and the motivation behind the tests was disclosed in detail to them. After the showing and clarification, cathode focuses were set apart within the sight of particular people and physiotherapist, and afterward subjects were permitted to take practice preliminaries so as to get acquainted with the test. The data was gathered just for jump tennis service execution in the court.

In the wake of making all sections of the subject relating to his profile on the product, the subject played out the skill and their readings were recorded in microvolt (μV).

Statistical Techniques Used In This Study

The concerned data was examined by utilizing graphic statistical so as to electromyography examinations of chest and back capacity amid

executing the jump tennis service in volleyball. So as to decide the relationship of chose (Chest and Back) muscles exercises with the execution of jump tennis service in volleyball, Pearson Multiple Correlation Technique was utilized. The data was investigated by utilizing SPSS (Statistical Package for the Social Sciences) rendition 19. The dimension of essentialness for the whole analysis was set at the 0.05 dimension. So as to decide the relationship of chose (chest and back) muscles exercises with the execution of jump tennis service in volleyball, Pearson Multiple Correlation Technique was utilized. The dimension of essentialness for the whole analysis was set at the 0.05 dimension.

RESULT AND DISCUSSION

Table-1: Descriptive Statistics of the Muscular Contraction of Selected Muscles

		Pectoralis	Trapezius
N	Valid	12	12
	Missing	0	0
Mean		81.5174	134.8475
Std. Error of Mean		6.45213	13.10443
Median		83.12632	120.4021
Mode		47.20a	86.30a
Std. Deviation		23.41256	45.84563
Variance		511.610	212.334
Skewness		.424	.940
Std. Error of Skewness		.636	.636
Kurtosis		-.301	-.164
Std. Error of Kurtosis		1.233	1.233
Range		75.10	135.50
Minimum		48.20	86.30
Maximum		124.30	222.80

The table 1 uncovers that the muscular constriction of chose muscles amid tennis jump tennis service in Volleyball, the mean and standard deviation of upper arm gathering of muscles were following: Trapezius muscle have most astounding initiation with Mean and SD estimation of (134.8475) and (45.84563) Pectoralis muscle have fifth largest amount actuation with Mean and SD (81.5174) and (23.41256) separately.

Table-2: Relationship of Muscular Contraction

		Performance	Pectoralis	Trapezius	Biceps	Triceps	Anterior Deltoid	Posterior Deltoid
Pearson Correlation (Multiple)	Performance	1.000	.584*	-.033	.224	-.012	.376	.150
	Pectoralis	.562*	1.000	-.032	.361	.187	.169	-.141
	Trapezius	-.040	-.042	1.000	-.028	.384	-.060	.456
	Biceps	.217	.361	-.027	1.000	.553	.297	-.086
	Triceps	-.013	.184	.389	.543	1.000	.361	.178
	Anterior Deltoid	.379	.178	-.055	.291	.377	1.000	-.215
	Posterior Deltoid	.151	-.156	.458	-.085	.178	-.214	1.000
	Deltoid							

*Correlation is significant at the 0.05 level (1-tailed)
Significant value of the correlation coefficient at 0.05 levels with 10 degree of freedom (1-tailed) is 0.496

As appeared table 2, just a single muscles bunch that is Pectoralis is discovered connected with the execution of jump tennis service in Volleyball where determined „r(0.573) is discovered more noteworthy than the required arranged estimation of 0.496 at 0.05 dimension of criticalness. Be that as it may, the get estimation of Coefficient of connection in other variable was not exactly the required classified an incentive at chose dimension of centrality, accordingly back muscles (Trapezius) have indicated irrelevant relationship with the execution of subjects in regard to jump tennis service in Volleyball.

Trapezius muscle showed the most astounding enactment dimension of EMG amid execution of tennis survive in Volleyball. This higher muscular activity is happened because of the commandingly right arm development, when executing the tennis service in Volleyball. Pectorals muscles demonstrated the fifth most elevated actuation dimension of EMG amid execution of tennis service in Volleyball. Pectoral muscles (casually alluded to as "pecs") are the muscles that interface the front of the human chest with the bones of the upper arm and shoulder.

CONCLUSIONS

Assessment of EMG bend permitted watching an example of muscle actuation amid the free toss and chest passes. While breaking down the toss, muscles biceps brachii of the left arm actuates as first, at that point the noticeable enactment happens in the left arm. As of now, the development of the ball over the player's head starts. Based on results acquired, after ends were drawn:

As per finding the examination, Trapezius muscle demonstrated the most astounding actuation dimension of EMG amid execution of jump tennis servive in Volleyball. Pectoralis muscles demonstrated the fifth most elevated actuation dimension of EMG amid execution of jump tennis service in Volleyball. Just a single muscles bunch that is Pectoralis is discovered connected with the execution of jump tennis service in Volleyball. The unimportant relationship was found between back (Trapezius) muscles and with the execution of jump tennis service in Volleyball.

REFERENCES

1. Escamilla, R. F., Yamashiro, K., Paulos & Andrews, J. R. (2009). Shoulder muscle activity and function in common shoulder rehabilitation exercises. *Sports medicine*. 39(8), pp. 663-685.

2. Moore, K. L., Dalley, A. F., & Agur, A. M. (2010). *Moore's Clinical Anatomy*.
3. Griffin, John, C. (2006). *Client-Centered Exercise Prescription*. (https://books.google.com/books?id=qkQNO_3vb6oC). Champaign, IL: Human Kinetics. p. 217.
4. Lewis, W. H., & Gray, H. (1918). Anatomy of the human body. *Lea & Febiger, Philadelphia doi, 10*.
5. "Tufts"(<http://iris3.med.tufts.edu/headneck/Triangles/Posterior%20Triangle%20of%20the%20Neck.htm>). Retrieved 2007-12-11.
5. <https://www.youtube.com/watch?v=LVVdlwf1iyM>
6. <https://www.youtube.com/watch?v=4-Va6GdGHBw>
7. Borysiuk Z., Zmarzły D. [2005] Elektromiografia powierzchniowa (sEMG) jako narzędzie badania reakcji psychomotorycznych. Opole, pp. 188-192.
8. Abe S., Nozawa T., Kondo T. [2009] A proposal of EMG – based training support system for basketball dribbling. Symposium on human interface 2009, held as part of HCI International 2009, San Diego, CA, USA, July 19-24, 2009. "Lecture Notes in Computer Science" 5617, pp. 459-465.
9. Zachry T., Wulf G., Marcer J., Bezodis N. [2005] Increased movement accuracy and reduced EMG activity as the result of adopting an external focus of attention. "Brain Research Bulletin" № 67, pp. 304-307.

Corresponding Author

Piyush Kumar Chunilal Patel*

Assistant Professor in Physical Education