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Abstract — We apply the level-3 Reformulation Linearization Technique (RLT3) to the Quadratic
Assignment Problem (QAP). We then present our experience in calculating lower bounds using an
essentially new algorithm, based on this RLT3 formulation. This algorithm is not guaranteed to calculate
the RLT3 lower bound exactly, but approximates it very closely and reaches it in some instances.
Calculating lower bounds for problems sizes larger than size 25 still presents a challenge due to the
large memory needed to implement the RLT3 formulation. Our presentation emphasizes the steps taken
to significantly conserve memory by using the numerous problem symmetries in the RLT3 formulation of

the QAP.

INTRODUCTION

The QAP is the various maximum hard combinatorial
optimization issues. This is unlucky, considering the
fact that a substantial array of programs arises in
facility format and design. Solving widespread
problems of length extra than N = 30 , i.E. With extra
than 900 binary variables, is still computationally
impractical.

Although the QAP is NP-tough, this complexity isn't
always enough to explain its difficulty, as different
classes of NP-difficult problems can be solved a long
way extra efficaciously than the QAP. The majority of
QAP take a look at problems have a homogeneous
goal characteristic, and this contributes to their
difficulty. Such homogeneity tends to provide bounds
which are less powerful in pruning partial answers
inside binary seek bushes. Among precise
algorithms, department-and-bound methods are the
maximum a success, however loss of tight lower
bounds has been one of the most important
hindrances.

The earlier computational revel in the use of in the
beginning degree-1 and then degree-2 RLT QAP
formulations has indicated promising studies
directions. The resulting linear representations,
Problems RLT1 and RLT2, are an increasing number
of massive in size and especially degenerate. In
order to solve those problems, Hahn and Grant
(1998) and Adams et al. (2006) have offered a dual-

ascent approach that exploits the block-diagonal
structure of constraints within the degree-1 and
level-2 bureaucracy, respectively. This strategy is a
effective extension of that found in Adams and
Johnson (1994).

Problem RLT2 , specially, offers sharp lower
bounds. (2006), and therefore ends in very
aggressive genuine answer methods. A hanging
outcome is the notably few variety of nodes taken
into consideration within the binary search tree to
affirm optimality. This leads to marked fulfillment in
solving difficult QAP times of size N = 24 in record
computational time.

In this chapter, | introduce the extent-3 RLT
formulation of the QAP, and display that the
hierarchy of quadratic, cubic and biquadratic
challenge troubles is directly related to the RLT
hierarchy. Also supplied are the superior decrease
bounds supplied by means of the level-three RLT
QAP version.

THE BIQUADRATIC
PROBLEM (BQAP)

ASSIGNMENT

The QAP minimizes a quadratic function over an
task matrix. Burkard et al. (1994) gave the
definition of the biquadrate challenge hassle
(BQAP) which arose within the subject of VLSI
synthesis. The BQAP is to minimize a weighted
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sum of products of four binary variables subject to a
couple of choice constraints on those variables.

Given two 4-dimensional matrices of N*elements fi=[aw] and B =[ﬁw,,],

the BQAP can be written as

N NN N N N N N
min 12 ; 22 FZ:_ ; Z 2B e e | (12)
x € X, x binary
N N
where xe X f{xZO:z.\;‘ =LY (j= l,...,J\«‘)‘ZxU =LV (i=1.., N)} (6-1b)
i=l =l

Notice that the constraints of the BQAP are the same
old a couple of preference constraints over the

challenge matrix. Thus, the solution matrix X =[]0
the BQAP is also a permutation matrix. By
representing the variables xij via a permutation of the
set 1,..., N, one receives the following formulation in
permutation as

N L
E}L“} Z zz 2 ai*v::ﬁmmmi Jolp)o(g) > (6-2)

wherely denotes the set of all permutations of {1,...,
N} and ¢ Iy . If the coefficients £-l%]<*" are the
prices associated with the goods of 4 binary
variables, the BQAP becomes

N N

)55 % %%

N N
i=l j=I k=l n=l p=l g=1 g

Z Eiitnpagin X Xin* pg Xgn ) (6-3)

h=1

1
:x e X, xbinary

An alternative way is to show linear costs #-[2]<%"
quadratic costs €=Lew /22" cupic
costs?=[4ew]<2"

costs” " individually. Now the BQAP is

and biquadratic

N

1
gtim
A N
z z Cijtnpagh™ykn™ pg e
q g=!

h=1
ngikphejng

=

:x € X, x binary

(©4)

THE CUBIC ASSIGNMENT PROBLEM (CAP)
AND THE LEVEL-2 RLT FORMULATION OF
THE QAP

Similarly, | outline for the primary time the cubic
mission trouble (CAP), that's to limit the weighted
sum of products of 3 binary variables over the
identical undertaking matrix. If one uses the
notations above, the CAP may be formulated as

N N N N N N
d,. 2 E
o [ZZEEE S s, | oo
:x € X, x binary
Or,

Assignment Problem

N N N

N N N N N N ) N
IR REEIDDWILTELRIN I IPIP I AL
1 i=l =l 1 1 j=1 1 .
in

N N
1 i=l =l k=l n i=l j=1 k=l n=l p=1 g
mn ki k Feik g

ntj #i e prik g

:x e X, x binary

(6-6)

If one introduces the variables yijkn and zijknpg to
replacement the products of Yiun = Xj Xkn @Nd Zijknpg =
Xj Xkn Xpg respectively, the system of the CAP is
similar to the level-2 RLT version of the QAP, that is
repeated under. (Construction details of Problem
RLT2 given in Section 2.5.2).

[RLT2]

N N

N

ZI Z Z duhvw:ubrwf (6-Ta)
q

s f

p=l gl
ot g

min Z\:ib"x" + iiz

N
i=l j=1 i=l j=1 k=l m
ki

N N N N

2 Gt 202
1 1

e b

=1 j=l k=l n
k

.
s.t. Z Zjinps = Vitn i, jkng=1L. Ng#n=jk=#i, (6-7b)
p=l
i
N
Zitapg = Vit Ljknp=1L_ Np#k#in#j, (6-7¢c)
i
Ziingg = Zinijpg = Ligpgin — Zinpgii — Z pgijin — Z pakuif
iLjknpg=L. . . Np>k>i,g#n#j, (6-7d)
Z inge >0 ik pg=1. . . Npzk#ig#n#j, (6-7e)
v
Zyw X i, jon=1.. ,Nn#j, (6-71)
o
N
> Vi =, i jk=1 Nk=i, (6-7g)
n=]
we
Yiiin = Ying iLjkn=1L_ Nk>i,n#j, (6-7h)
Vien 20 i, jkon=1. Nk=#in=#j, (6-71)
x e X, xbinary. (6-7)

Since the additional constraints (6-7b)-(6-7i) in
Problem RLT2 are derived absolutely from the
substitutions of yjun = Xij Xkn and zZjjpg = Xij XKN Xpq ,
you can use the extent-2 RLT QAP version to solve
the CAP.

THE LEVEL-3 RLT FORMULATION OF THE
QAP

One ought to assume the level-three RLT QAP to
be used for solving the BQAP. The level-three RLT
system is constructed as follows. In its
reformulation step, multiply every of 2N equality
constraints and every of N 2 non negativity
regulations (which are rewritten in variables xkn )
through every of N 2binary variables xij .Then,
multiply every of 2N equality constraints and every
of N 2nonnegativity restrictions (which can be
rewritten in variables xpq ) through each of N 2 ( N
-1)2 pair wise products of variables xij xkn (k # i
and n # j ) . Then, multiply each of 2N equality
constraints and every of N 2 non negativity
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restrictions (which can be rewritten in variables xgh )
via every of N2 (N —1).

restrictions.  Express the various resulting products in the order x x, , x x, x  and
ke ik g

XX, X X

. Substitute x, =x,, reduce xxx,_  and x xx,  to xx, . and reduce
i kn ™ pg N gh W i Tt e U] ki i i

X, XX s XX, XX, and X, x v, x, 10 x,x,x, . Set x,x, =0 if (k=7 and n = j) or
(k=i and n=j) in all quadratic expressions. And set x,x,%,, =0 if (p=i and
g=j). (p=k and g=#n), (p+i and g=j) or (p+k and g=n) in all cubic

expressions. And set x,x,x, X,

=0if (g=i and h=j), (g=k and h=n), (g=p
and h#gq), (g#i and h=j), (g#k and h=n) or (g=p and h=g) in all
biquadratic expressions. Then, in the linearization step, substitute every occurrence of

each product x,x,, (k=i and n= j) with a single nonnegative continuous variable Vit
And, substitute every occurrence of each product x,x,,x,, (p#k#i and g#n= j) with

a single nonnegative continuous variable = .

g - 180, substitute every occurrence of

each product xx,x,x, (g#p#k=i and h#g=#n=j) with a single nonnegative

continuous  variable v Enforce the symmetric restrictions that

pagh -

Yot = Yoy v(i, j.k.n=1, .._N)‘A' >i,n# j. Also, enforce the symmetric restrictions that

Zipnpg = Ztnipg = Ziipgtn = Zhapais = = paitn = = it

(i, jk.n p.g=1,.N),p>k>ig#n# j, and enforce the symmetric restrictions that
v

oh =V W,

Vitnghpg = Viniighpg =

ighkupy — Vinghijng — Vijghpghn — Viewghegii — ¥ paghijin — ¥ paghinit — V ghijknpg — ¥ ghknijpg

= Vonupgijin = Vghpoinij

V(:“::w:n:;w;hzl _N)‘; >p>k>ih#qg#n#j, too. Then, the level-3 RLT
System of QAP is given under, where the coefficients
diknpq aNnd €jnpggn  discovered in the objective feature
are all 0. Notice that Problem RLT3 allows nonzero
dijnpg @Nd €jjnpggh  Values, so that it generally handles
biquadratic mission problems.

[RLT3]

=l j=1 k=1 n=
[

SD) LRSI NI IS SEDIVINIIP P I

(6-8a)

(6-8b)
.\
3 Vo = Tue LAk PG gL NigEprkEigEnE ],
=
B fng
(6-8¢)
Vignpgeh = Viogpggs = Vipakngh = Vimpaiigh = Vpaitngh — ¥ pahnijgh
= Viknghpg = Vinizghpg = Vigpgghin — Vinpgehis = Vpgiightn — Y pqkughiy
= Vignimpg = Vinghtipg = Vigghpain — Vinghpgyt = V paghien — ¥ paghiny
= Vonipinpg = Ventmipg = Ventipgin = Veknpgy = Yenpaitn = Venpainis
iLjknpqggh=1_ Ng>p>k>ihzq#n#j, (6-8d)
Vitnpgeh = 0
Lk p.g.g.h=1. Ngzpzkzihzq#n=], (6-8¢)
v
2 Zipe = i ijkng=1. N:g=n=jhk#i, (6-80)
=
Ptk
v
- - - _ 2
2 Zig = Vi ijknp=l. NipEkzine], (6-8g)
rEl
Py

i jknpg=L. . Np>k>i.g#n#j, (6-8h)

Ztupg =0 Lk pg=1._  Npzrk#ig#n#], (6-8i)
N
D Vi =%, Ljn=1 . Nn#j, (6-8j)
k=

N
> Y =%, L k=1, ,Nk#i, (6-8k)
n=1
Yikn = Viny i jkn=1_ Nk>in#j, (6-81)
YVira Z 0 i,j.kn=1.., N:k#in=j, (6-8m)
x e X, xbinary . (6-8n)

Just as one is capable of practice the level-2 RLT

QAP version to remedy the CAP, one can resolve
the BQAP the use of the level-three RLT QAP
model, for the reason that extra constraints (6-8b)-
(6-8m) inside the above formulation are derived
completely from the substitutions of yixn = Xij Xn,
Ziknpg = Xij XKN Xpg @nd Vijnpggh = Xij XKn X pg Xgn
.Therefore, the enlargement related to the
multiplication of binary variables in the goal
capabilities offers an n-hierarchy of assignment
problems that has an immediate relation with the n-
hierarchy of the RLT fashions of the QAP.

THE LEVEL-3 RLT
PROCEDURE OF THE QAP

DUAL-ASCENT

Just like Problems RLT1 and RLT2, Problem RLT3
is equal to the QAP whilst the binary constraints on
x are enforced. While RLT1 implies ik, = Xij xkn
and RLT2 additionally implies zjxnpq = Xij Xkn xpq ,
RLT3 also implies Vijnpggn = Xij Xkn X pg xgh . When
relaxing the x binary constraints, RLT3 offers the
tightest decrease bounds of all three RLT fashions,
since RLT2 ( RLT1) may be derived from RLT3 and
not using a constraints imposed on v ( and z ).
Although Problem RLT3 gives very sharp bounds,
the formula is drastically larger in size than QAP,
RLT1 and RLT2 . It is likewise exceedingly
degenerate, due to the fact from all the severa
equality constraints found in Problem RLT3 ,
simplest 2N constraints in x € X have nonzero
right-hand-facet (RHS) values. The undertaking is
to extract tight bounds from this formula without
paying a heavy computational fee.

Fortunately, one want not solve Problem
RLT3 to optimality, considering the reality that each
dual viable solution gives a decrease bound. The
approach is to speedy compute near-most efficient
twin answers.

One can acquire a smaller formulation of RLT3 via
the substitution suggested by using constraints (6-
8d), (6-8h) and (6-8l) without affecting the bounding
strength. Those last variables turnout to be Viynpggn
(g>p>okay>i,h#q#n#j), Zjpq(P>k>i,q
#n #j)and yjm (okay > i, n #j ). This makes
constraints (6-8d), (6-8h) and (6-8l) needless. Here
| do no longer carry out such operations, however
alternatively exploit a block-diagonal structure gift
inside Lagrangian sub problems. Suppose
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constraints (6-8d), (6-8h) and (6-8l) are dualized into
the objective feature the use of a few Lagrangian
multipliers. Let bij , cijkn , dixnpq and €jxnpggn denote
the objective coefficients associated with xij , yijkn ,
Zijknpq @Nd Vijknpggn respectively, modified from bij , Cin ,
dijknpg and ejmpqgn Within the original objective
characteristic of RLT3 by means of dualizing (6-8d),
(6-8h) and (6-8l). The changed model RLT3M is
offered beneath.

NN N N
Z z ijknpg = ijkpg
w=l pel gel
i e .

(6-9)

(6-8b),(6-8¢),(6-8¢),(6-81),(6-8g),(6-81),(6-8]),(6-8K),(6-8m), x € X

The binary constraints on x in (6-9) are secure
quickly, if you want to be defined later.

Now Problem RLT3M is prepared for decomposition.
Adams et al. (2006) proved the following LEMMA.

Lemma 6-1. Consider any feasible and bounded
linear program of the form [LP]

7 =min {c] x+g'w: Bw>dx, for some chosen i, Ax > b} R (6-10)

Where Bw =2 d and Ax = b denote possible and
bounded polyhedral units, with Ax = b implementing
Xi = zero . Then an most suitable answer ( X", w" ) to
LP can be received through solving

Z:min{(chAe,]Jx:szb}, (6-11)
Where
A=min{g'w:Bwzd}, (6-12)

And in which ei is the unit column vector having a 1
in role i and zeroes elsewhere. Here,x" = x and w" =
w Xi with x fixing (6-11) and w solving (6-12), in
orderthatZ=2.

Based upon LEMMA 5-1 and the decomposition of
RLT2, it is easy to decompose RLT3M into a
sequence of task troubles. Namely, the following
THEOREM applies.

Theorem 6-2. Problem RLT3M (6-9) can be solved
by the assignment problem

min {ii(ﬁ, +)/‘J)IU‘XGX}, (6-13)

i

where foreach (ij, ), ij y is computed as

Assignment Problem

N N
3 (G + ) Y0
ey
s.t.
.
DV =LV (n# )

7, =min

by N (6-14)
¥
z}'m :Lv(l‘ #i)
=1
e

i 20V (k#in# )
kn=1__N

And where for each (i, j, k, n) with k#i and n#j , ik,
is computed as

v

N -
22 2 (e * Prta) e

=1 g=1
kgejn

N
Z Zijinpg = l,\?f(q # I")
My =N L > (6-15)

X
N
> Zpg = LV (p#ik)

>0,V (p#ikig#j.n)

Zijknpg

pg=1.,N

And where foreach (i ,j,k,n, p,q) withp#k#i
and g # n # j ,@jknpq iS computed as

N
E CjknpaghVigknpagh
=

B g

.
>
s.t

.
22 Vit =1V (= jomq)
Pty =MD 57, : (6-16)

.
> Vi =LV (g 21k, p)
Wimg
>0,¥(g ik, pih# jn,q)

Vigknpy

gh=1.,N

Proof.

Forany (i,j,k,n,p,q)withp#ok#iandq#n#
j , treat the equality constraints (6-8b)-(6-8c) and
the non-negativity constraints (6-8e) of (6-9) as Bw
> dxi of (6-10), with xi of (6-10) represented by
variable zjn,q and w of (6-10) represented with the
aid of variables Vjjyupqen With g # p # okay # i and h #
g #n #j, and deal with the last variables and
constraints of (6-nine) as x and Ax = b
respectively. Then follow LEMMA 6-1, in order that
the ensuing problem of the form (6-11) includes no
Viknpggh term for the selected (i, j, okay, n, p, Q).
Denote of (6-12) as ¢ijknpqg , in order that the goal
coefficient of zjn,q changes from iynpg 10 dijnpg +
Pijknpg- NOW, (6-9) becomes.

N N N N N
PIOILIEDI I I
i=l =1 i=1 j=1 k=1 n=1

ki wrf
C v N

N N N
min {222 D D Dy + P ) Fooms |- (6-17)
i=l j= =] 1
)

n=l p=l g=1
nz j prik e fon
s.t.

(6-81),(6-8g),(6-81),(6-8).(6-8Kk),(6-8m), x € X

The relaxation of proof is to use LEMMA 6-1 twice,
which was blanketed within the THEOREM proof
from the RLT2 decomposition with the aid of
Adams et al. (2006).
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First, efficiently do away with allzjympq With p # k # i
and q # n #j, where (6-17) becomes

NN _ N NN N
PHIERDN NI WCAEL M
=l j=1 i=1 j=1 k=l n=1
kei nzj

min (6-18)

in

s.t.
(6-8]),(6-8K),(6-8m), x € X

And then remove all yj, with k#i and nZ#j , till the
problem is finally reduced to (6-13) only in variables
X; . This completes the proof. 1

The premier (binary) way to (6-9) can be obtained as
follows.Let x , y, z and v denote the computed most
desirable (intense factor) answers to (6-13), (6-14),
(6-15) and (6-16), respectively. By LEMMA 6-1,
(solves (6-18) in which

=i, (6-19a)

T = Ty V(f,j, k,n) with k=i andn#j; (6-19b)

Also by LEMMA 6-1, given that (¥,7) is optimal to (6-18), (¥.5,%) solves (6-17)

where
X=X, (6-20a)
V=7, (6-20b)
and  Z,, = Z T V(0 ko p,q) with prkziandg#nz j; (620¢)

Again by LEMMA 6-1, given that (¥,¥.Z) is optimal to (6-17), (£, .%.9) solves (6-9),

#=F, (6-21a)

y=5, (6-21b)

i=I, (6-21c)
and Vi = Ve Zabapg -

V(l,j,k,n,p,q,g,h) with gzpzkziandh#g#n+j. (6-21d)y

Altogether, one obtains (X, y,Z,¥), which is optimal to (6-9), in terms of (X, J,Z.7) as

X:x=X, (6-22a)
¥ )t‘m = VX, V(i,j,k,n) with k#iandn=j, (6-22b)
Z: ‘:f/knrw = EWHM;JI’W;U R V(J,j,k,n,p,q) with pzkziandg=n#j, (6-22¢)
and v: ﬁt/hn;rq;.'/z = “Jr/kn/u/«h'zuhmqi i/Aﬁva/ >
V(i,j.k.n p.q.g.h) with gz pzkziandhzg=n=j. (6-22d)

Now, on account that (6-13)-(6-16) are undertaking
problems, the extreme factors are binary so that x , y
, z and v are binary, which makes ( x, y, z, v) an
most suitable binary solution to (6-9).

THEOREM 5-2 and its proof show a way to
decompose into one RLT3M task hassle (6-13)
of size N, N2 task issues (6-14) of length N =1, N 2 (
N -1)2 task troubles (6-15) of length N -2, and
N2(N-1)2(N-2)2 project problems (6-sixteen)
of length N — three. This motivates a Lagrangian
method for determining the most useful set of twin
multiplier values for constraints (6-8d), (6-8h) and (6-
8l), and for this reason for acquiring the surest goal
value of the continuous rest Problem RLT3 . | gift
underneath a twin-ascent method, a good deal

similar to that hired in Adaf415 et al. (2006) for
Problem RLT2 , which offer a monotonic non
decreasing series of decrease bounds for the QAP
thru Problem RLT3 . Notice that with the symmetric
constraints (6-8d) connecting the twenty-4 v
variables, it doubtlessly results in extracting as much
as viable from the associated price matrix E , thereby
increasing the lower certain Z . This observation also
applies to the cost matrix D by means of constraints
(6-8h) and to the cost matrix C via constraints (6-8l).
Here are the stairs.

1. Initialize (6-9) by assigning ... =€.. .

=0 for W(i,j.k.n p.g.g.h) with

g=p=k=i and h=zg=n=j, d

g = Dy =0 fOr (i, jk,m, p.q) with
p=k=i and g=n= j, T, =c,, for v(i, jk,n) with k=i and n= j, and
B, =b, for ¥(i, /), where ¢, R

irpagh gy » €yen and B are objective coefficients

taken from RLT3. Set the initial lower bound Z = 0. Set the iteration counter to
be 0

2a.  For each (i, /). distribute the coefficient 5, among the (N —1)" coefficients g,
forall k=i and n= j by increasing each such z,,, by b, /(N —1) and decreasing
b, to 0. This is equivalent, for each (i, ). to adding B, /(N ~1) times each of
the N —1 equations > y,, —x, =0 forall k=i found in (6-8k) to the objective
of (6-9).

2b For each (i, j.k.n) with i= j and k=n, distribute the updated coefficient &,

among the (N —2) coefficients 4,

e fOT all p=ik and g = j.n by increasing

each such d,

iowe DY i, /(N —2) and decreasing T, to 0. This is equivalent, for

each (i,j.k,n) with i=j and k=n, to adding T, /(N —2) times each of the

N -2 equations 3z, ., =0 for all p=ik found in (6-8g) to the
i
abjective of (6-9)
2c.  For each (i, jk.n.p.q) with i=j, k=n and p=gq, distribute the updated

among the (N =3) coefficients &,

coefficient d,, -

for all g=ik,p and

by dp f(N —3) and decreasing d,

h= j.n g by increasing each such 2, ks

inpagh
to 0. This is equivalent, for each (i, j,k.n, p,q) with i=j, k=n and p=gq, to

adding c?!‘.w /[ N -3) times each of the N -3 equations 3> v, =0

Wi

gzt~ Zipknpg

forall g =ik, p found in (6-8¢) to the objective of (6-9).

3 Use THEOREM 6-2 to sequentially solve (6-9) as

N*(N=1)"(N=2)"+N*(N~1)"+N*+1 assignment problems.
3a. Solve N*(N-1)°(N-2) assignment problem (6-16) of size N -3 to obtain ©
and the value ¢, as follows. Sequentially consider all (i, ik.n p.g) with

p#k=i and g=n=j, beginning with those (i.j.k,n, p,q) for which ‘?ww

prior to step 2c was 0. For a selected (i.j.k,n p,g). change the coefficient

€ fOr €ach g =ik, p and h+ j.n.g to a percentage of the sum of g, .

Choiah + Copatrae > Chmpaireh >

e, [ = €,

ik > € paimigh > Citngia » iatin > Chapgei »

Kaiighpa * pasichicn
€ pginghii > Eijghinpg > Cinghijpg » Sifghpgin » Cinghogii > Cpaghiiin > Epaghinii » Eghijtnpg » Eghinijpg » Ehifpgin >
@ kg > Copgutn» AN E o and equally adjust the latter twenty-three values so
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that the sum stays constant. Upon solving this assignment problem, place the
corresponding equality constraints (6-8b) and (6-8c) into the objective function

with the optimal dual multipliers, effectively readjusting the g, . values for
g=ik,p and h= j,n.q and increasing d .. by @, . Proceed through all
such (i, j,k,n, p.q) indices where p=k =i and g=n= j

3b. Solve N* (N - 1)° assignment problem (6-15) of size N ~2 to obtain Z and the
value 1, as follows. Sequentially consider all (i, j,k,n) with k=i and n= j,
beginning with those (i,j.k,n) for which Z,, prior to step 2b was 0. For a

selected (i, j.k,n). change the coefficient 3.)“.“ for each p=i.k and g= j,n to

oy A

a percentage of the sum of d,, . d, I — paknii »

nijpg > dwb- >
equally adjust the latter five values so that the sum stays constant. Upon solving
this assignment problem, place the corresponding equality constraints (6-8f) and
(6-8g) into the objective function with the optimal dual multipliers, effectively

readjusting the &

e values for p=ik and g = j,n and increasing ,, by 7,

Proceed through all such (i, 7,k,n) indices where k =7 and n = j

3c. Solve N? assignment problem (6-14) of size N —1 to obtain ¥ and the value 75
as follows. Sequentially consider all (i, j), beginning with those (£, j) for which
B, prior to step 2a was 0. For a selected (i, 7). change the coefficient &, for
each k=i and n= j to a percentage of the sum of ¢, and g, , and then adjust

€,,, so that the sum stays constant. Upon solving this assignment problem, place

the corresponding equality constraints (6-8j) and (6-8k) into the objective function
with the optimal dual multipliers, effectively readjusting the Z,,, values for k =i
and n= j and increasing &, by », . Proceed through all such (i.) indices

3d Solve the assignment problem (6-13) of size N to obtain . Upon doing so,
place the equality constraints of X into the objective function with the optimal
dual multipliers, adjusting the value of &, and the lower bound Z . Here, Z is
increased by the nonnegative objective value to the minimization problem of (6-
13). Proceed to step 4.

4. If the binary optimal solution (%.¥.Z,%). computed as (6-22), to (6-9) is feasible
to RLT3, ie, if it satisfies (6-8d), (6-8h) and (6-81), stop with (%, j,£,v) optimal
to problem QAP. If it is not feasible to RLT3, stop if some predetermined
number of iterations has been performed. Otherwise, increase the iteration
counter by 1 and return to step 2a_

The dual-ascent procedure will produce a nondecreasing sequence of lower

bounds since Step 1 is input with all variables having nonnegative reduced costs

COMPUTATIONAL
LEVEL-3 RLT
CALCULATION

RESULTS OF THE
LOWER BOUND

Several years in the past Professor Hahn coded in
FORTRAN a initial twin-ascent algorithm that
calculates QAP level-three RLT root lower bounds.
To demonstrate the capability of level-three RLT, |
tested this code and done a sequence of
experiments the usage of benchmark QAP times.
Table 1 compares the overall performance of the
QAP degree-3 128 RLT algorithm with the quality
lower bound values achieved for these instances by
using some other methods. For every test trouble,
Table 1 affords the extent-3 RLT lower bound
finished after seven hundred iterations of the set of
rules. The Optimum column gives the most efficient
value. The Lower Bound column lists the extent-
three RLT decrease sure for each QAP instance.
The Run time column shows the CPU seconds
normalized to a Dell 7150 gadget on a single
733MHz CPU. The Best Previous and Method
columns provide the preceding best lower bounds

Assignment Problem

and its attaining set of rules from Table 1 of Loiola et
al. (2006).

Table 1. The QAP level-3 RLT lower bounds

Instance [Optimum | Lower |[Runtime| Best |Method
Bound Previous
577.15* [1,468 578 RLT2
1,149.74* {16,671  |1,150  [RLT2

1,930** 186,951 1,905 RLT2

Nugl2 578
Nugl5 [1,150
Nug18 1,930

Nug20  [2,570 2,569.19* 304,274 [2,508* [RLT2
Hadl6  [3,720 3,718.11* |~15,000 3,672 RLT2
Had18 5,358 5,357.67* 44,680 5,299 RLT2
Had20 16,922 6,919.1 48,020 6,811 RLT2
Roul5 354,210 [354,210**951 350,207 [RLT2

Rouz20 725,520
Tai20a 703,482

725,314.41252,282 695,123 [RLT2
703,482**[254,432 671,685 [RLT2

Optimum demonstrated by using the level-3 RLT
lower sure code.

Problem solved precisely through the extent-3 RLT
lower certain code. + Recently corrected end result
via the level-2 RLT lower sure code.

As stated before, the wide variety of variables
grows dramatically with RLT degree. RLT 2 code
already run into memory barriers for off-the-
contemporary technology of computer systems for
trouble instances larger than N = 36 . Those
limitations have made it hard, if now not impossible
to calculate degree-three RLT decrease bounds for
trouble instances large than N = 20 , even though
RLT 3 code has proven even greater promise for
decreasing the range of nodes that have to be
taken into consideration for providing optimal.
Figure 1 below demonstrates the boom in random
get entry to reminiscence (RAM) with hassle
example length, required for stage-3 root lower
certain calculations. The linear extrapolation is
based totally on statistics from the decrease certain
experiments on 4 Nugent times reported in Table 1.

Memory (log GB)
£

[ 5 10 15 20 25 30 4] 40

QAP Problem Size

Figure 1. Memory required for level-3 RLT lower
bound calculations.

CONCLUSION
This section reports the level-3 reformulation-

linearization procedure (RLT) detailing of the
quadratic task issue (QAP) and its primer lower
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bound estimations. By broadened meanings of the
cubic and biquadrate task problems, | am ready to
build up a chain of command of zero-one task
problems parallel to the RLT progressive system of
the QAP. Consequently, another hypothetical
method for interfacing the QAP and its related
problems is set up through their answer techniques.
RLT systems, while demonstrating extraordinary
guarantee, need to date got little examination as far
as handy application. My motivation in this part is to
demonstrate that viable methods can be conceived
to make these procedures helpful, for settling the
QAP, vyet for explaining enormous classes of
comparably troublesome combinatorial improvement
problems.
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