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Abstract – We apply the level-3 Reformulation Linearization Technique (RLT3) to the Quadratic 
Assignment Problem (QAP). We then present our experience in calculating lower bounds using an 
essentially new algorithm, based on this RLT3 formulation. This algorithm is not guaranteed to calculate 
the RLT3 lower bound exactly, but approximates it very closely and reaches it in some instances. 
Calculating lower bounds for problems sizes larger than size 25 still presents a challenge due to the 
large memory needed to implement the RLT3 formulation. Our presentation emphasizes the steps taken 
to significantly conserve memory by using the numerous problem symmetries in the RLT3 formulation of 
the QAP. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

INTRODUCTION 

The QAP is the various maximum hard combinatorial 
optimization issues. This is unlucky, considering the 
fact that a substantial array of programs arises in 
facility format and design. Solving widespread 
problems of length extra than N = 30 , i.E. With extra 
than 900 binary variables, is still computationally 
impractical. 

Although the QAP is NP-tough, this complexity isn't 
always enough to explain its difficulty, as different 
classes of NP-difficult problems can be solved a long 
way extra efficaciously than the QAP. The majority of 
QAP take a look at problems have a homogeneous 
goal characteristic, and this contributes to their 
difficulty. Such homogeneity tends to provide bounds 
which are less powerful in pruning partial answers 
inside binary seek bushes. Among precise 
algorithms, department-and-bound methods are the 
maximum a success, however loss of tight lower 
bounds has been one of the most important 
hindrances. 

The earlier computational revel in the use of in the 
beginning degree-1 and then degree-2 RLT QAP 
formulations has indicated promising studies 
directions. The resulting linear representations, 
Problems RLT1 and RLT2, are an increasing number 
of massive in size and especially degenerate. In 
order to solve those problems, Hahn and Grant 
(1998) and Adams et al. (2006) have offered a dual-

ascent approach that exploits the block-diagonal 
structure of constraints within the degree-1 and 
level-2 bureaucracy, respectively. This strategy is a 
effective extension of that found in Adams and 
Johnson (1994). 

Problem RLT2 , specially, offers sharp lower 
bounds. (2006), and therefore ends in very 
aggressive genuine answer methods. A hanging 
outcome is the notably few variety of nodes taken 
into consideration within the binary search tree to 
affirm optimality. This leads to marked fulfillment in 
solving difficult QAP times of size N ≥ 24 in record 
computational time. 

In this chapter, I introduce the extent-3 RLT 
formulation of the QAP, and display that the 
hierarchy of quadratic, cubic and biquadratic 
challenge troubles is directly related to the RLT 
hierarchy. Also supplied are the superior decrease 
bounds supplied by means of the level-three RLT 
QAP version. 

THE BIQUADRATIC ASSIGNMENT 
PROBLEM (BQAP) 

The QAP minimizes a quadratic function over an 
task matrix. Burkard et al. (1994) gave the 
definition of the biquadrate challenge hassle 
(BQAP) which arose within the subject of VLSI 
synthesis. The BQAP is to minimize a weighted 



 

 

 

Sajjan Singh1* Dr. Amardeep Singh2 

w
w

w
.i
g

n
it

e
d

.i
n

 

632 

 

 An Analysis upon the Level-3 Reformulation-Linearization Technique (RLT) for the Quadratic 
Assignment Problem 

sum of products of four binary variables subject to a 
couple of choice constraints on those variables. 

 

Notice that the constraints of the BQAP are the same 
old a couple of preference constraints over the 

challenge matrix. Thus, the solution matrix X = To 
the BQAP is also a permutation matrix. By 
representing the variables xij via a permutation of the 
set 1,..., N , one receives the following formulation in 
permutation as 

 

whereΓN denotes the set of all permutations of {1,..., 

N} and ϕ ΓN . If the coefficients are the 
prices associated with the goods of 4 binary 
variables, the BQAP becomes 

 

An alternative way is to show linear costs , 

quadratic costs cubic 

costs and biquadratic 

costs individually. Now the BQAP is 

 

THE CUBIC ASSIGNMENT PROBLEM (CAP) 
AND THE LEVEL-2 RLT FORMULATION OF 
THE QAP 

Similarly, I outline for the primary time the cubic 
mission trouble (CAP), that's to limit the weighted 
sum of products of 3 binary variables over the 
identical undertaking matrix. If one uses the 
notations above, the CAP may be formulated as 

 

Or, 

 

If one introduces the variables yijkn   and zijknpq   to 
replacement the products of yijkn = xij xkn  and zijknpq = 
xij xkn xpq  respectively, the system of the CAP is 
similar to the level-2 RLT version of the QAP, that is 
repeated under. (Construction details of Problem 
RLT2 given in Section 2.5.2). 

[RLT2] 

 

 

Since the additional constraints (6-7b)-(6-7i) in 
Problem RLT2 are derived absolutely from the 
substitutions of yijkn = xij xkn and zijknpq = xij xkn xpq , 
you can use the extent-2 RLT QAP version to solve 
the CAP. 

THE LEVEL-3 RLT FORMULATION OF THE 
QAP 

One ought to assume the level-three RLT QAP to 
be used for solving the BQAP. The level-three RLT 
system is constructed as follows. In its 
reformulation step, multiply every of 2N  equality 
constraints and every of N 2  non negativity 
regulations (which are rewritten in variables xkn ) 
through every of N 2binary variables xij .Then, 
multiply every of 2N equality constraints and every 
of N 2nonnegativity restrictions (which can be 
rewritten in variables xpq ) through each of N 2 ( N 
−1)2  pair wise products of variables xij xkn (k ≠ i 
and n ≠ j ) . Then, multiply each of 2N equality 
constraints and every of N 2 non negativity 
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restrictions (which can be rewritten in variables xgh ) 
via every of N2 (N −1). 

 

 

System of QAP is given under, where the coefficients 
dijknpq  and eijknpqgh  discovered in the objective feature 
are all 0. Notice that Problem RLT3 allows nonzero 
dijknpq and eijknpqgh  values, so that it generally handles 
biquadratic mission problems. 

[RLT3] 

 

 

 

Just as one is capable of practice the level-2 RLT 
QAP version to remedy the CAP, one can resolve 
the BQAP the use of the level-three RLT QAP 
model, for the reason that extra constraints (6-8b)-
(6-8m) inside the above formulation are derived 
completely from the substitutions of yijkn = xij xkn, 
zijknpq = xij xkn xpq and vijknpqgh = xij xkn x pq xgh 

.Therefore,  the  enlargement related to the 
multiplication of binary variables in the goal 
capabilities offers an n-hierarchy of assignment 
problems that has an immediate relation with the n-
hierarchy of the RLT fashions of the QAP. 

THE LEVEL-3 RLT DUAL-ASCENT 
PROCEDURE OF THE QAP 

Just like Problems RLT1 and RLT2, Problem RLT3 
is equal to the QAP whilst the binary constraints on 
x are enforced. While RLT1 implies yijkn = xij xkn 
and RLT2 additionally implies zijknpq = xij xkn xpq , 
RLT3 also implies vijknpqgh = xij xkn x pq xgh . When 
relaxing the x binary constraints, RLT3 offers the 
tightest decrease bounds of all three RLT fashions, 
since RLT2 ( RLT1) may be derived from RLT3 and 
not using a constraints imposed on v ( and z ). 
Although Problem RLT3 gives very sharp bounds, 
the formula is drastically larger in size than QAP, 
RLT1 and RLT2 . It is likewise exceedingly 
degenerate, due to the fact from all the severa 
equality constraints found in Problem RLT3 , 

simplest 2N constraints in x ∈ X have nonzero 
right-hand-facet (RHS) values. The undertaking is 
to extract tight bounds from this formula without 
paying a heavy computational fee.
 Fortunately, one want not solve Problem 
RLT3 to optimality, considering the reality that each 
dual viable solution gives a decrease bound. The 
approach is to speedy compute near-most efficient 
twin answers. 

One can acquire a smaller formulation of RLT3 via 
the substitution suggested by using constraints (6-
8d), (6-8h) and (6-8l) without affecting the bounding 
strength. Those last variables turnout to be vijknpqgh 
(g > p > okay > i , h ≠ q ≠ n ≠ j ) , zijknpq ( p > k > i , q 
≠ n ≠ j) and yijkn (okay > i , n ≠ j ) . This makes 
constraints (6-8d), (6-8h) and (6-8l) needless. Here 
I do no longer carry out such operations, however 
alternatively exploit a block-diagonal structure gift 
inside Lagrangian sub problems. Suppose 
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constraints (6-8d), (6-8h) and (6-8l) are dualized into 
the objective feature the use of a few Lagrangian 
multipliers. Let bij , cijkn , dijknpq and eijknpqgh denote 
the objective coefficients associated with xij , yijkn , 
zijknpq and vijknpqgh respectively, modified from bij , cijkn , 
dijknpq and eijknpqgh within the original objective 
characteristic of RLT3 by means of dualizing (6-8d), 
(6-8h) and (6-8l).  The changed model RLT3M is 
offered beneath. 

 

The binary constraints on x in (6-9) are secure 
quickly, if you want to be defined later. 

Now Problem RLT3M is prepared for decomposition. 
Adams et al. (2006) proved the following LEMMA. 

Lemma 6-1. Consider any feasible and bounded 
linear program of the form [LP] 

 

Where Bw ≥ d and Ax ≥ b denote possible and 
bounded polyhedral units, with Ax ≥ b implementing 
xi ≥ zero . Then an most suitable answer ( xˆ , wˆ ) to 
LP can be received through solving 

 

Where 

 

And in which ei is the unit column vector having a 1 
in role i and zeroes elsewhere. Here,xˆ = x and wˆ = 
w xi  with x fixing (6-11) and w solving (6-12), in 
order that Z = Z . 

Based upon LEMMA 5-1 and the decomposition of 
RLT2, it is easy to decompose RLT3M into a 
sequence of task troubles. Namely, the following 
THEOREM applies. 

Theorem 6-2. Problem RLT3M (6-9) can be solved 
by the assignment problem 

 

where for each (i j , ) , ij γ is computed as 

 

And where for each (i , j , k , n) with k≠i and n≠j , ηijkn  
is computed as 

 

And where for each (i , j , k , n, p , q) with p ≠ k ≠ i 
and q ≠ n ≠ j ,ϕijknpq is computed as 

 

Proof. 

For any ( i , j , k , n, p , q) with p ≠ ok ≠ i and q ≠ n ≠ 
j , treat the equality constraints (6-8b)-(6-8c) and 
the non-negativity constraints (6-8e) of (6-9) as Bw 
≥ dxi of (6-10), with xi of (6-10) represented by 
variable zijknpq and w of (6-10) represented with the 
aid of variables vijknpqgh with g ≠ p ≠ okay ≠ i and h ≠ 
q ≠ n ≠ j , and deal with the last variables and 
constraints of (6-nine) as  x and  Ax ≥ b 
respectively. Then follow LEMMA 6-1, in order that 
the ensuing problem of the form (6-11) includes no 
vijknpqgh term for the selected (i, j, okay, n, p, q). 
Denote of (6-12) as ϕijknpq , in order that the goal 
coefficient of zijknpq changes from ijknpq  to dijknpq + 
ϕijknpq. Now, (6-9) becomes. 

 

The relaxation of proof is to use LEMMA 6-1 twice, 
which was blanketed within the THEOREM proof 
from the RLT2 decomposition with the aid of 
Adams et al. (2006). 
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First, efficiently do away with allzijknpq with p ≠ k ≠ i 
and q ≠ n ≠ j , where (6-17) becomes 

 

And then remove all yijkn with k≠i and n≠j , till the 
problem is finally reduced to (6-13) only in variables 
xij . This completes the proof. ⁭ 

The premier (binary) way to (6-9) can be obtained as 
follows.Let x , y , z and v denote the computed most 
desirable (intense factor) answers to (6-13), (6-14), 
(6-15) and (6-16), respectively. By LEMMA 6-1, 
(solves (6-18) in which 

 

 

 

Now, on account that (6-13)-(6-16) are undertaking 
problems, the extreme factors are binary so that x , y 
, z and v are binary, which makes ( x, y, z , v ) an 
most suitable binary solution to (6-9). 

THEOREM 5-2 and its proof show a way to 
decompose  into one RLT3M task hassle (6-13) 
of size N, N2 task issues (6-14) of length N −1, N 2 ( 
N −1)2   task  troubles (6-15) of length  N − 2 ,  and  
N 2 ( N − 1) 2 ( N − 2)2  project problems (6-sixteen) 
of length N − three.  This motivates a Lagrangian 
method for determining the most useful set of twin 
multiplier values for constraints (6-8d), (6-8h) and (6-
8l), and for this reason for acquiring the surest goal 
value of the continuous rest Problem RLT3 . I gift 
underneath a twin-ascent method, a good deal 

similar to that hired in Adams et al. (2006) for 
Problem RLT2 , which offer a monotonic non 
decreasing series of decrease bounds for the QAP 
thru Problem RLT3 . Notice that with the symmetric 
constraints (6-8d) connecting the twenty-4 v 
variables, it doubtlessly results in extracting as much 
as viable from the associated price matrix E , thereby 
increasing the lower certain Z . This observation also 
applies to the cost matrix D by means of constraints 
(6-8h) and to the cost matrix C via constraints (6-8l). 
Here are the stairs. 
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COMPUTATIONAL RESULTS OF THE 
LEVEL-3 RLT LOWER BOUND 
CALCULATION 

Several years in the past Professor Hahn coded in 
FORTRAN a initial twin-ascent algorithm that 
calculates QAP level-three RLT root lower bounds.  
To demonstrate the capability of level-three RLT, I 
tested this code and done a sequence of 
experiments the usage of benchmark QAP times.  
Table 1 compares the overall performance of the 
QAP degree-3 128 RLT algorithm with the quality 
lower bound values achieved for these instances by 
using some other methods. For every test trouble, 
Table 1 affords the extent-3 RLT lower bound 
finished after seven hundred iterations of the set of 
rules. The Optimum column gives the most efficient 
value. The Lower Bound column lists the extent-
three RLT decrease sure for each QAP instance. 
The Run time column shows the CPU seconds 
normalized to a Dell 7150 gadget on a single 
733MHz CPU. The Best Previous and Method 
columns provide the preceding best lower bounds 

and its attaining set of rules from Table 1 of Loiola et 
al. (2006). 

Table 1. The QAP level-3 RLT lower bounds 

 

Optimum demonstrated by using the level-3 RLT 
lower sure code. 

Problem solved precisely through the extent-3 RLT 
lower certain code. + Recently corrected end result 
via the level-2 RLT lower sure code. 

As stated before, the wide variety of variables 
grows dramatically with RLT degree. RLT 2  code 
already run into memory barriers for off-the-
contemporary technology of computer systems for 
trouble instances larger than N = 36 . Those 
limitations have made it hard, if now not impossible 
to calculate degree-three RLT decrease bounds for 
trouble instances large than N = 20 , even though 
RLT 3 code has proven even greater promise for 
decreasing the range of nodes that have to be 
taken into consideration for providing optimal. 
Figure 1 below demonstrates the boom in random 
get entry to reminiscence (RAM) with hassle 
example length, required for stage-3 root lower 
certain calculations. The linear extrapolation is 
based totally on statistics from the decrease certain 
experiments on 4 Nugent times reported in Table 1. 

 

Figure 1. Memory required for level-3 RLT lower 
bound calculations. 

CONCLUSION 

This section reports the level-3 reformulation-
linearization procedure (RLT) detailing of the 
quadratic task issue (QAP) and its primer lower 
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bound estimations. By broadened meanings of the 
cubic and biquadrate task problems, I am ready to 
build up a chain of command of zero-one task 
problems parallel to the RLT progressive system of 
the QAP. Consequently, another hypothetical 
method for interfacing the QAP and its related 
problems is set up through their answer techniques. 
RLT systems, while demonstrating extraordinary 
guarantee, need to date got little examination as far 
as handy application. My motivation in this part is to 
demonstrate that viable methods can be conceived 
to make these procedures helpful, for settling the 
QAP, yet for explaining enormous classes of 
comparably troublesome combinatorial improvement 
problems. 
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