

Acoelomorpha (Flatworm) in the Western Pacific Ocean: Its Molecular Studies, Morphology and Phylogenetic Diversity

Vikash*

M.Sc. Zoology (CSIR Net)

Abstract – *Acoelomorpha isolated from whitened conditions in the area coral Cosciinareaa marshae presented in Rottnest Island, Australia. It is delineated using a blend of morphological and phylogenetically systematics. Such acoels were starting late found to have a spot with the family Waminoa and another species was delineated: W. brickneri. Worms isolated from a couple of coral creature types showed capriciousness in size and regenerative state, proposing the proximity of more than one sorts of Waminoa. Present examination revolves around morphological features typical for the sort Waminoa (Acoelomorpha: Acoela) and moreover the proximity of two algal symbionts, anyway appears to have genital areas not equivalent to those of other delineated kinds of Waminoa. The two body shapes each addressed an alternate clade in 18S rDNA and mitochondrial COI (cytochrome-c oxidasesubunit 1) phylogenetic trees, with W. brickneri consolidated into the obcordate subclade. Modified Barcode Gap Discovery (ABGD) assessments on COI courses of action of our models revealed the closeness of in any occasion five operational arranged units (OTUs). These five OTUs contained one immense social affair whole obcordate animals, out of them 3 OUT's involving one model each inside the molarlike clade and a enormous get-together out of them left molarlike models. The two clades contain different morphotypes and were connected with an arrangement of hosts. Finally, in light of genetic detachments, the molar-like models are considered as an unknown sort social affair separate from Waminoa, which ought to be clarified in future examinations.*

Keywords: Flatworm, Acoela, Morphological, Phylogenetic Diversity.

INTRODUCTION

The Acoela contain a unimaginably varying taxon of little (~0.5 to 10 mm long), secretive, exclusively marine worms (Hooge and Tyler 2005). Acoels epizoic on live coral territories (Trench and Winsor 1987, Winsor 1990 and have been represented to possess both pelagic and littoral circumstances (McCoy and Balzer 2002) and are known to consolidate species that are epibenthic, epiphytic (Hooge and Tyler 2006), Barneah et al. 2007a). They are a morphologically changed assembling of sensitive bodied worms (Hooge et al. 2002) without a gut cavity and protonephridia (Tyler 2003).

Hendelberg and Akesson, 1988 or Waminoa Winsor, 1990 and all are characterized inside the family Convolutidae (Tyler et al., 2006). Just two types of Waminoa flatworms are right now depicted in full, Waminoa litus Winsor, 1990, found in North Queensland and Waminoa brickneri Ogunlana et al., 2005, found in the Red Sea. Because of the huge assorted variety in morphology of acoels, a number of attributes are utilized in their arrangement. The size and state of flatworms, course of action of their

musculature, organ cells and cilia, just as situation of the mouth and parenchymal cells, are altogether utilized in morphological portrayals (Achatz et al., 2013). The most solid type of distinguishing proof is by highlights of their copulatory organs (Petrov et al., 2006; Achatz et al., 2009). Be that as it may, it is ending up increasingly normal that qualifications between creature gatherings ought not be chosen by morphological methods alone (Wiens, 2004).

Sub-atomic examinations on acoel flatworms have utilized 18S rDNA successions to affirm character to class level (Ogunlana et al., 2005; Hooge and Tyler, 2005). Nonetheless, the evolutionary pace of 18S rDNA is strikingly quicker in Acoela relative to most other taxa, which has made it hard to structure PCR groundworks that effectively target Acoela alone. For instance, Barneah et al. (2012) enhanced coral and algal 18S rDNA groupings notwithstanding those of Waminoa when utilizing preliminaries planned by Norén and Jondelius (1999) for acoel flatworms, and noticed the requirement for preliminaries that explicitly target Waminoa. Thus, Hikosaka-Katayama et al. (2012)

recuperated 18S rDNA groupings from the dinoflagellate *Amphidinium* while utilizing these equivalent preliminaries to enhance level worm DNA.

Acoel flatworms living epizoically with coral have been as of late depicted in Queensland (Winsor, 1990), the Red Sea (Ogunlana et al., 2005), Indonesia (Ruiz-Trillo et al., 1999; Haapkylä et al., 2009) and Japan (Matsushima et al., 2010). Only two sorts of *Waminoa* flatworms are starting at now portrayed in full, *Waminoa litus* Winsor, 1990, found in North Queensland and *Waminoa brickneri* Ogunlana et al., 2005, found in the Red Sea. Despite those delineated in nature, at any rate three kinds of epizoic flatworms have been depicted on corals in aquaria (Shannon and Achatz, 2007). These flatworms have been connected with either sort *Convolvulida* Cooper et al. Hendelberg and Akesson, 1988 or *Waminoa* Winsor, 1990 and all are masterminded inside the family *Convolutidae* (Tyler et al., 2006). On account of the colossal not too bad assortment in morphology of acoels, different properties are used in their portrayal. The size and condition of flatworms, approach of their musculature, organ cells and cilia, similarly as circumstance of the mouth and parenchymal cells, are through and through used in morphological depictions (Achatz et al., 2013).

The most strong kind of recognizing evidence is by features of their copulatory organs (Petrov et al., 2006; Achatz et al., 2009). In any case, it is wrapping up progressively normal that capabilities between animal social affairs should not be picked by morphological strategies alone (Wiens, 2004).

Most by a wide edge of the depicted creature species are relatively even (Dunn et al 2014). The foundation of two adjusted body tomahawks gave the motivation to titanic fundamental unpredictability separated and radially even creatures, which permitted a certainly differentiating developmental result [Baguñà et al 2004]. Regardless, how bilaterians made and the probability of the first bilaterian creature stays questionable.

People from Xenacoelomorpha, which is surrounded by Acoela, Nemertodermatida and Xenoturbella, are morphologically fundamental: the stomach related system just makes them open, they need circulatory, respiratory and excretory structures, and besides don't have a body discouragement between the gut and the epidermis (Hejnol A, Pang 2016, Haszprunar 2015).

Regardless, the full different assortment and morphological uniqueness of Xenacoelomorpha isn't yet known, in light of the fact that it has never been moved closer in an exact, high-throughput way. It is thusly possible that there are secretly or unsampled xenacoelomorph heredities with logically complex morphologies or lifestyles, in different living spaces, or having earlier phylogenetic circumstances in the

Xenacoelomorpha tree. For example, a couple of assessments have portrayed acoel morphospecies in freshwater [Nastasescu Popescu–Marinescu 2004 Vila et al 2016], salty water (Ax and Dörjes, 1996) and planktonic normal surroundings [19]. Thusly, any undertaking to appreciate the nature and condition of Urbilateria will require an undeniably worldwide and exact examinations of Xenacoelomorpha grouped assortment.

The Acoelomorpha are a gathering of creatures with highlights that were once placed in the phylum Platyhelminthes (flatworms). In 2004 atomic investigations demonstrated this wasn't right.

Presently obviously their nearest relatives are the Xenoturbellida, and the two gatherings make up the proposed new phylum, the Xenacoelomorpha.

Most scientists trust them to be basal among the bilateria, somewhat more inferred than the Cnidaria. Late outcomes recommend that they (alongside Xenoturbella) may lie close to the base of the deuterostomes A continuous communitarian research venture has "the scientists ... sure that they can agree about where acoels fit in transformative history".

"The outcomes demonstrate that the two gatherings establish a recently arranged phylum... which the creators name the 'Xenacoelomorpha'. The xenacoelomorph phylum joins the three known phyla of deuterostomes: vertebrates (counting people), echinoderms (for example starfish) and hemichordates (oak seed worms)".

Acoels are primarily marine, living between grains of residue, swimming as microscopic fish, or slithering on green growth. Acoels have a statocyst, which probably encourages them arrange to gravity. Their delicate bodies make them hard to characterize.

Acoelomorpha is a clade involved three phyla that have been translated as firmly related 'crude turbellarians': acoels, nemertodermatids, and Xenoturbella. Atomic phylogenetics demonstrates that Acoela and Nemertodermatida are not part of the Platyhelminthes and rather puts them either as sister bunches in the Acoelomorpha or independently as resulting right on time off-shoots of the line to the Eubilateria. An ongoing report proposes that the acoelomorphs are the sister gathering of the ambulacrarians. The three phyla may likewise be considered as the sister gathering of the Eubilateria, in spite of the fact that it is conceivable that they speak to consequent side branches on hold prompting the this clade.

CLASSIFICATION AND ANATOMY OF FLATWORM (ACOELOMORPHA)

Customarily, in light of morphological characters, acoelomorphs were considered to have a place with the phylum Platyhelminthes, which was around then observed as the sister gathering to all other bilaterian phyla. In any case, a progression of atomic investigations since the finish of the twentieth century exhibited that they have a place with a different phylum, in all probability as basal reciprocal creatures somewhat more determined than cnidarians. The genuine situation of Xenacoelomorpha was not yet all around characterized, as certain outcomes indicated them as having a place with the deuterostomes. Nonetheless, reanalyses and expanded taxon and quality examining in phylogenomic investigations support the position of Xenacoelomorpha as sister gathering to Nephrozoa with great help.

Acoels have a statocyst, which apparently encourages them situate to gravity. Their delicate bodies make them hard to arrange.

Acoelomorphs take after flatworms in numerous regards, however have a less complex life structures, not in any event, having a gut. Like flatworms, they have no circulatory or respiratory frameworks, however they likewise come up short on an excretory framework. They need body deppressions (acoelomate structure), a hindgut or a rear-end.

The epidermal cells of acoelomorphs can't multiply, an element that is just common with rhabditophoran flatworms and was for quite a while considered a solid proof for the situation of Acoelomorpha inside Platyhelminthes. In the two gatherings, the epidermis is restored from mesodermal undeveloped cells.

The sensory system of acoelomorphs is framed by a lot of longitudinal nerve packages underneath the ciliated epidermis. Near the front end, these groups are joined by a ring commissure, yet don't shape a genuine cerebrum, in spite of the fact that it is conjectured that such association was the antecedent of the cephalization of the nerve framework in increasingly determined bilaterians. After execution, such a "cerebrum" (rather, a cerebroid ganglion) recovers in half a month.

The tactile organs incorporate a statocyst, and, at times, extremely crude shade spot ocelli fit for distinguishing light.

Acoelomorpha is a social event of separately symmetric animals with a conspicuous morphological ease: they need body gaps, corporal division, circulatory and respiratory structures, nephridia or protonephridia and larval stages, and their stomach related system just makes them open to the outside. The Acoelomorpha have been fused into the phylum Platyhelminthes since it was made (Gegenbaur

1859) and are divided in two huge clades: acoels and nemertodermatids. Platyhelminthes were, all the while, part in three noteworthy heritages: Acoelomorpha, Catenulida and Rhabditophora (Ehlers 1985). Regardless, it was by then pointed out that there were no unquestionable, unequivocal synapomorphies to join the three social affairs of Platyhelminthes (for a review, see Haszprunar 1996; Julian et al. 1986). The sister pack relationship of Acoela and Nemertodermatida (that together structure the clade Acoelomorpha) relied upon somehow more grounded disputes. These consolidated the ciliary rootlet system, a flighty two section amicability twisting cleavage during the starting times of progression, nonappearance of nephridia, well-described guts and through-gut, regardless of the way that the nonattendance of complex structures could be a plesiomorphic feature (Achatz et al. 2012). There are, as well, some huge morphological differences between these two social occasions of worms, the acoels and the nemertodermatids. For example, acoel sperm has two flagella and their statocyst bear single lithocyte, while nemertodermatid sperm has a singular flagellum and their statocysts hold two lithocytes. A start to finish delineation of the morphology of acoelomorphs has been starting late disseminated by Achatz et al. (2012).

Despite the nonattendance of clear synapomorphies to join acoelomorphs and the rest of flatworms, most morphological phylogenetic assessments arranged Acoelomorpha inside Platyhelminthes, which appeared in different circumstances inside Metazoa, when in doubt inside Protostomia (Fig. 1a, see references in Baguña and Riutort 2004a). In any case, Haszprunar put Acoelomorpha as the sister heredity to the rest of Bilateria (Haszprunar 1996) (Fig. 1b). In particular, Platyhelminthes was prescribed to be a paraphyletic accumulation with Acoelomorpha as the soonest fanning clade, trailed by Rhabditophora, by then Catenulida, and after that the rest of Bilateria. This circumstance is reminiscent of the planuloid-acoeloid hypothesis maintained by Von (Graff 1882) and (Hyman 1940), in which an acoel-like flatworm was suggested as the first bilaterian animal. In any case, the telling hypotheses masterminded Acoelomorpha either inside Platyhelminthes or as sister to Rhabditophora, Catenulida and the rest of Bilateria.

MOLECULAR STUDIES

Nuclear assessments on acoel flatworms have used 18S rDNA progressions to attest character to class level (Ogunlana et al., 2005; Hooge and Tyler, 2005). Regardless, the transformative pace of 18S rDNA is famously speedier in Acoela near with most other taxa, which has made it difficult to design PCR foundations that adequately target Acoela alone. For example, Barneah et al. (2012) improved coral and algal 18S rDNA groupings

despite those of Waminoa when using starters organized by Norén and Jondelius (1999) for acoel flatworms, and saw the prerequisite for foundations that unequivocally target Waminoa. Moreover, Hikosaka-Katayama et al. (2012) recovered 18S rDNA progressions from the dinoflagellate *Amphidinium* while using these proportionate preparations to upgrade flatworm DNA.

There are no records of Acoela itemized from Western Australia. This is shocking, as Rottnest Island is a bit of a biodiversity hotspot in southwest Australia (Myers and Mittermeier, 2000) and a couple of identification studies have been endeavored in the Ningaloo Coast World Heritage region. Unusually, in 2010/2011 the West Australia coastline experienced a warming event, during which ocean temperatures were up to 3°C higher than ordinary over the pre-summer months (Pearce et al., 2011). During this period *Coscinaraea marshae* corals having profundities underneath 20 m colored (i.e., removed their algal symbionts). This was the principle coral seen to blur (Thomson et al., 2011), from the 25 species that involve the region (Wells et al., 1993). Following this blurring event limitless acoel flatworms could be watched living on these *Coscinaraea marshae* corals (Thomson et al., 2011).

MORPHOLOGICAL STUDIES

Individuals from Xenacoelomorpha, which is shaped by Acoela, Nemertodermatida and Xenoturbella, are morphologically very basic: the stomach related framework just makes them open, they need circulatory, respiratory and excretory frameworks, and furthermore do not have a body depression between the gut and the epidermis [Hejnol and Pang, 2016, Haszprunar, 2015]. Xenacoelomorphs live in benthic living spaces, and most of depicted species have originated from silt, chiefly in seaside zones [Meyer-Wachsmuthl, 2014, Curini-Galletti, 2012]. This morphological straightforwardness of Xenacoelomorpha appears to help the planuloid-acoeloid speculation proposed by Von Graff and Hyman, which visualized Urbilateria to be a basic, benthic acoelomate living being displaying direct advancement [Baguñà 2013, Nakano et al 2013].

In any case, the full assorted variety and morphological divergence of Xenacoelomorpha isn't yet known, on the grounds that it has never been drawn closer in a deliberate, high-throughput way. It is in this manner conceivable that there are in secret or unsampled xenacoelomorph heredities with progressively complex morphologies or ways of life, in various environments, or possessing prior phylogenetic situations in the Xenacoelomorpha tree. For instance, a few examinations have depicted acoel morphospecies in freshwater [Nastasescu M, Popescu-Marinescu 2004, Vila-Farré, 2013], saline water [Ax and Dörjes, 1992] and planktonic living spaces [Stoecker, 1989]. In this way, any endeavor to comprehend the nature and environment of

Urbilateria will require a progressively worldwide and orderly investigations of Xenacoelomorpha decent variety.

PHYLOGENETIC DIVERSITY

The structure of new oligonucleotide starters engaged the improvement of inadequate 18S rDNA of the Rottnest Island acoel models, and phylogenetic examination arranged them inside Waminoa, insisting their game plan in the family. In addition, Waminoa models from Rottnest Island gathered into a sister clade to Waminoa *brickneri*, showing that the morphological and innate differentiations viewed are more likely than not intraspecific and due to geographic assortment. Subsequently, we name these Rottnest Island models *W. cf. brickneri*, yet include that key differentiations warrant further examination before errand to this species can be insisted. This is the first acoel flatworm depicted from Western Australia and adds to our appreciation of the average assortment and formative relationship of the Acoela.

Acoelomorphs are concurrent bisexuals, yet have no gonads and no pipes related with the femaleceptive framework. Rather, gametes are delivered from the mesenchymal cells that fill the body between the epidermis and the stomach related vacuole.

The essential 18S rRNA sub-nuclear phylogeny including a flatworm organized Platyhelminthes as the most prompt extending bilaterians (Field et al. 1988). This result was copied in later examinations (Winneppenninckx et al. 1995). This reinforced the conventional morphological view setting Platyhelminthes as the sister social affair to the rest of Bilateria, and prescribed an acoelomate-to-coelomate ladder like headway in bilaterians. The results, regardless, must be taken with caution, since the 18S rRNA progressions of Platyhelminthes exhibited incredibly long-branches, demonstrating that they had higher paces of nucleotide substitution than various metazoans (Winneppenninckx et al. 1995). Around at that point, the "long-branch interest old irregularity" (LBA) had been starting at now depicted, in which taxa with longer branches will as a rule artificially bundle together, regularly mistakenly, in light of the way that they bunch closer to the outgroup (Felsenstein 1978). LBA is an unavoidable issue in sub-nuclear phylogenies, in the ribosomal rRNA characteristics just as in tremendous phylogenomic datasets, where it as often as possible obscures the associations between key taxa. Different approaches to manage thrashing such exact issues have been proposed in the composition (Anderson and Swofford 2004; Bergsten 2005; Paps et al. 2009a). Peculiarly, in the essential phylogenetic tree inferred with a wide taxon testing of Platyhelminthes and other creature phyla,

Platyhelminthes (without Acoela) appeared to be related to the Protostomia and not as the most timely spreading bilaterians (Carranza et al. 1997). Nevertheless, the phylogenetic circumstance of acoels was seen as conflicting by the makers (Carranza et al. 1997), due to LBA. Point of fact, the primary two acoel courses of action available around then had fundamentally longer branches than those from various Platyhelminthes. Thusly, regardless of the way that the essential nuclear data seemed to assert that Platyhelminthes (likely including acoels) were the sister social event to the rest of Bilateria, dynamically solid, taxon-rich, examinations orchestrated them inside the protostomes, leaving the circumstance of acoels unsure due to their snappier paces of nucleotide substitution.

The phylum Platyhelminthes has customarily been considered the most basal bilaterian taxon. The principle trouble with this situation is the absence of persuading synapomorphies for all Platyhelminthes, which recommend that they are polyphyletic. Later sub-atomic discoveries dependent on 18S rDNA succession information and number and sort of Hox qualities unequivocally propose that most of Platyhelminthes are individuals from the lophotrochozoan protostomes, though the Acoelomorpha (Acoela + Nemertodermatida) fall outside of the Platyhelminthes as the most basal bilaterian taxon. Here we survey phylum-wide investigations dependent on complete ribosomal and other atomic qualities routed to answer the primary issues confronting systematics and phylogeny of Platyhelminthes. We present and examine (I) new validating proof for the polyphyly of the Platyhelminthes and the basal situation of Acoelomorpha; (ii) another agreement interior tree of the phylum; (iii) the nature of the sister gathering to the Neodermata and the theories on the beginning of parasitism; and (iv) the inward phylogeny of some rhabditophoran orders. Some methodological provisos are additionally presented. The need to raise another phylum, the Acoelomorpha, separate from the Platyhelminthes (presently Catenulida + Rhabditophora) and dependent on present and new morphological and atomic characters is featured, and a proposition made. In any case, clients may print, download, or email articles for individual use. This unique might be abbreviated. No guarantee is given about the exactness of the duplicate. Clients ought to allude to the first distributed rendition of the material for the full dynamic.

CONCLUSION

In this examination we perceive the flat worm acoel from Rottnest Island, Australia, expressly Rottnest Island. We depict its morphology and investigate inadequate 18S rDNA progressions of this guide to that of other acoel flatworms. This data include the extent that anybody is worried of the geographic spread and better than average assortment of

Acoela and later on give express preparations to less difficult distinctive evidence of Waminoa spp.

Anyway it is additionally studied that it is very surprising to know that the Rottnest Island is a bit of a biodiversity hot's pot in southwest Australia.

REFERENCES

Achaz J. & Hooge M. (2006). *Convolutidae (Acoela)* from Tanzania.

Ax P, Dörjes J. (1966). *Oligochoerus limnophilus* nov. spec. ein kaspisches Faunenelement als erster Süßwasservertreter der Turbellaria Acoela in Flüssen Mitteleuropas. *Internationale Revue der Gesamten Hydrobiologie* 51, pp. 15–44. (10.1002/iroh.19660510104)

Baguñà J. & Riutort M. (2004). The dawn of bilaterian animals: the case of acoelomorph flatworms. *BioEssays* 26, pp. 1046–1057. (10.1002/bies.20113)

Barneah O., Ben-Dov E., Benayahu Y., Brickner I., Kushmaro A. (2012). Molecular diversity and specificity of acoel worms associated with corals in the Gulf of Eilat (Red Sea). *Aquat Biol* 14: pp. 277–281

Curini-Galletti M., et. al. (2012). Patterns of diversity in soft-bodied meiofauna: dispersal ability and body size matter. *PLoS ONE* 7, pp. 1–13. (10.1371/journal.pone.0033801)

Dunn C.W., Giribet G., Edgecombe G.D., Hejnol A. (2014). Animal phylogeny and its evolutionary implications. *Annu. Rev. Ecol. Evol. Syst.* 45, pp. 371–395. (10.1146/annurev-ecolsys-120213-091627)

Haszprunar G. (2015). Review of data for a morphological look on Xenacoelomorpha (Bilateria incertae sedis). *Org. Divers. Evol.* 16, pp. 1–27.

Hejnol A., et. al. (2009). Assessing the root of bilaterian animals with scalable phylogenomic methods. *Proc. R. Soc. B* 276, pp. 4261–4270. (10.1098/rspb.2009.0896)

Hooge M.D., Tyler S. (2006). Concordance of molecular and morphological data: the example of the Acoela. *Integr Comp Biol* 46: pp. 118–124

Hyman L.H. (1940). *The invertebrates: Protozoa through Ctenophora*: vol. 1. New York, NY: McGraw-Hill.

McCoy A.M. & Balzer I. (2002). Algal symbiosis in flatworms. In: Seckbach J (ed) *Symbiosis: mechanisms and model systems*. Kluwer Academic Publishers, Dordrecht, pp. 561–574

Nakano H., Lundin K., Bourlat S.J., Telford M.J., Funch P., Nyengaard J.R., Obst M., Thorndyke M.C. (2013). *Xenoturbella bocki* exhibits direct development with similarities to Acoelomorpha. *Nat. Commun.* 4, 1537 (10.1038/ncomms2556)

Nastasescu M., Popescu–Marinescu V. (2004). Turbellaria spreading within iron gates area existing in benthic and phytophile fauna. *Revue Roumaine de Biologie Serie de Biologie Animale* 47, pp. 97–10.

Norén M., Jondelius U. (1999). Phylogeny of the Prolecithophora (Platyhelminthes) Inferred from 18S rDNA Sequences. *Cladistics* 15: pp. 103–112

Ogunlana M., Hooge M., Tekle Y., Benayahu Y., Barneah O., Tyler S. (2005). *Waminoa brickneri* n. sp. (Acoela: Acoelomorpha) associated with corals in the Red Sea. *Zootaxa* 1008: pp. 1–11

Pearce A., Lenanton R., Jackson G., Moore J., Feng M., Gaughan D. (2011). The ‘marine heat wave’ off Western Australia during the summer of 2010/11. *Fisheries Research Report No. 222*, Department of Fisheries, Western Australia, p. 40

Petrov A., Hooge M., Tyler S. (2006). Comparative morphology of the bursal nozzles in acoels (Acoela, Acoelomorpha). *J Morphol* 267: pp. 634–648

Ruiz-Trillo I., Riutort M., Littlewood D.T.J., Herniou E., Baguña J. (1999). Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. *Science* 283: pp. 1919–1923

Stoecker D., Swanberg N., Tyler S. (1989). Oceanic mixotrophic flatworms. *Mar. Ecol. Prog. Ser.* 58, pp. 41–51. (10.3354/meps058041)

Tyler S., Schilling S., Hooge M., Bush L.F. (comp.) (2006–2012) Turbellarian taxonomic database. Version 1.7. <http://turbellaria.umaine.edu>

Wiens J. (2004). The role of morphological data in phylogeny reconstruction. *Syst Biol* 53: pp. 653–661

Winsor L. (1990). Marine Turbellaria (Acoela) from north Queensland. *Mem Queensl Mus* 28(2): pp. 785–800

Corresponding Author

Vikash*

M.Sc. Zoology (CSIR Net)

vickysharma35893@gmail.com