

Natural Water Purification and Water Management by Artificial Groundwater Recharge in India

Vijay*

B.Tech (Civil Engineering), M.Tech (Transportation Engineering)

Abstract – Artificial groundwater recharge is a procedure by which the groundwater store is expanded at a rate surpassing the growth rate under natural states of renewal. In certain pieces of India, due to overuse of groundwater, decrease in groundwater levels bringing about deficiency of supply of water, and interruption of saline water in beach front regions have been watched. In such zones, there is requirement for artificial recharge of groundwater by expanding the natural invasion of precipitation or surface-water into underground arrangements by strategies, for example, water spreading, recharge through pits, shafts, wells and whatnot. The decision of a specific strategy is represented by neighborhood land, geographical and soil conditions; the amount and nature of water accessible for recharge; and the innovative prudent practicality and social adequacy of such plans. This paper examines different issues associated with the artificial recharge of groundwater.

Keyword: Artificial, Recharge, Groundwater

----- X -----

INTRODUCTION

Groundwater recharge is the renewal of a spring with water from the land surface. It is normally communicated as a normal pace of mm of water every year, like precipitation. Notwithstanding precipitation, different wellsprings of recharge to a spring are stream and lake or lake drainage, water system return stream (from the two waterways and fields), between spring streams, and urban recharge. Rather than natural recharge (which results from natural causes); artificial recharge is the utilization of water to renew artificially the water supply in a spring. Of the considerable number of components in the assessment of groundwater assets, the pace of recharge is one of the most hard to infer with certainty. Appraisals of recharge are regularly dependent upon huge vulnerabilities and spatial and fleeting inconstancy. The expanding interest for water has expanded mindfulness towards the utilization of artificial recharge to increase ground water supplies. Expressed basically, artificial recharge is a procedure by which abundance surface-water is coordinated into the ground – either by spreading superficially, by utilizing recharge wells, or by modifying natural conditions to build invasion – to renew a spring. It alludes to the development of water through man-made frameworks from the outside of the earth to underground water-bearing strata where it might be put away for sometime later. Artificial recharge (in some cases called arranged recharge) is an approach to store water underground

in the midst of water surplus to satisfy need in the midst of deficiency.

The developing populace and an expansion of industrialization and farming creation in various nations require increasingly more water of sufficient quality. In numerous areas there is an absence of surface water and extreme water sulllying is to be found. Shallow groundwater assets are regularly of inadequate quality and over-abused. In this manner, it is of high need to mull over all the demonstrated water systems that could decrease the current catastrophe.

Artificial groundwater recharge is an endorsed technique that has been improved during the most recent decades. It has been discovered that likewise the new sorts of contaminating specialists, particularly natural mixes, can be limited or even expelled by natural purification forms in the subsurface.

ARTIFICIAL GROUNDWATER RECHARGE

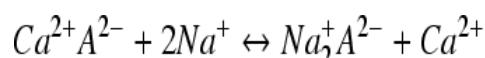
Artificial groundwater recharge is the invasion of surface water into shallow springs to expand the amount of water put away in the subsurface and to improve its quality by procedures of natural lessening. It very well may be polished particularly in stream valleys and sedimentary fields by invading waterway or lake water into shallow sand and rock layers. The invasion strategy is picked by

the hydro geographical conditions, the accessible ground space, the water need, the piece of the invaded water, and the level of purification to be accomplished. So as to improve the effectiveness of natural purification forms in the subsurface, artificial groundwater recharge can be joined with pre-treatment, bank filtration, plant purification, subsurface dams and artificial springs.

NATURAL PURIFICATION PROCESSES

Surface water contains inorganic and natural mixes of natural starting point as suspended issue and broke down substances. By and large, water in stream and lake is polluted by squander, sewage, synthetic compounds, hydrocarbons, prescription, hormones, anti-toxins, microbes, infections, manures, plant-defensive operators, and so forth and their rot items For drinking purposes, the defilements in water must be expelled or decimated by refining forms as totally as could be allowed.

Natural purification impacts inside channel layers and in the subsurface are caused principally by filtration, sedimentation, precipitation, oxidation-decrease, sorption-desorption, particle trade and biodegradation.


In plants for artificial groundwater recharge, the water being penetrated from the outset passes an artificially introduced layer of channel sand. This channel layer holds coarser particles by filtration.

Concoction responses between penetrated water, strong inorganic and natural substances in the subsurface, and the groundwater streaming towards the extraction well may cause precipitation of sparingly solvent carbonates, hydroxides and sulfides—administered by pH-worth and redox-potential—inside the channel layer and the spring.

The oxygen substance of the water is conclusive for oxidation procedures and exercises of microorganisms. The nearness of decreasing substances, for example, humic issue, causing an absence of oxygen, is answerable for synthetic decreases. pH-worth and redox-potential impact these responses, as well.

Broken up mixes, among them additionally contaminants, can be adsorbed particularly by mud minerals, iron-hydroxides, shapeless silicic corrosive, and natural substances. In the event that the substance arrangement of the water changes, desorption may occur.

Particle trade forms happen principally within the sight of natural issue and earth minerals. One sort of particle is traded against another in stoichiometric connection, e.g.,

Thusly, sullyng particles can likewise be fixed at underground.

The shaping of ionic and sub-atomic edifices changes the dissolvability, precipitation and sorption of substances, for example, substantial metals and natural mixes.

Inside the layer of channel sand and the spring, an extraordinary assortment of natural microorganisms exist, which are exceptionally engaged with recovery forms. Biodegradation, the rot of natural mixes by microorganisms, diminishes the measure of organics, regardless of they are of natural source or originating from pollutions.

The people group of purging creatures primarily comprises of autochthonous microbes, protozoa and metazoa. The gathering of protozoa incorporates whips, ciliates, one-celled critters, and so on., and the gathering of metazoa incorporates worms, nematodes, annelids and arthropods. The thickness of this populace of creatures diminishes, just as the expulsion productivity (Fig.)

REVIEW OF LITERATURE

The artificial recharge of groundwater has been endeavored for quite a while from around 600 A.D. itself (Sakthivadivel 2009). A few techniques, appropriate for various situations and states of surface water accessibility and land spread have been examined by numerous writers. Some significant ongoing examinations are explored here.

An examination in the upper catchment region of Kumari waterway bowl, India, arranged in the western piece of the Purulia District of West Bengal utilizing waste water sources have been researched (Singh et al 2002). This investigation saw that artificial recharge of groundwater will assume an expanding job in reuse of waste water in light of the fact that the development of water through soils and springs gives a methods for geo-purification of water through the procedure of Soil Aquifer Treatment (SAT). The investigation likewise demonstrated that a methodology joining various kinds of topical maps on geography, landform, lineament, hydro-geomorphology and seepage can be received to build up a composite guide indicating reasonable destinations for artificial recharge. It has been discovered that the intersection of third request and fourth request streams are the proper destinations for the development of artificial recharge structures.

Anbazhagan et al (2005) utilized the systems of remote detecting and GIS for artificial recharge study, overflow estimation and arranging in Ayyar bowl, Tiruchirapalli, Tamil Nadu, India. Ethereal

photos and geophysical resistivity information were utilized to organize appropriate locales for artificial recharge and to assess the volume of spring measurement accessible to recharge. Artificial recharge arranging was inferred based on accessibility of overflow, spring measurement, need zones and water table conditions. The land-use and landcover data translated from satellite information is utilized as one of the primary information parameters for evaluating spillover through the SCS bend strategy which can distinguish the area and accessibility of surface water potential. Further, it was seen that the GIS method is likewise valuable in spatial crossing point of various land use and land spread with different hydrological soil bunches in the water shed zones to streamline recharge areas.

The effect of urbanization on the groundwater system in Solapur, Central India was examined by Naik et al (2008). The groundwater levels include expanded inside the primary city territory because of expanded recharge and diminished groundwater deliberation. In any case, it was seen that there was a general decrease in groundwater levels because of expanded groundwater use for water system purposes. Water quality has weakened during the most recent ten years particularly in burrowed wells, basically because of abuse and neglect and presumably poor flow of groundwater. Be that as it may, the correlation of present water quality with that of 1970 and 1980's doesn't show any detectable change.

Saravei et al (2006) assessed the techniques for artificial recharge, for example, water spreading and artificial bowls in Gavandi waterway bowl situated in Boushehr territory, Iran. Four factors; the slant, surface penetration, alluvial thickness and water nature of residue were the viewpoints examined. The incline was set up from topographic maps while the surface penetration was evaluated from surface of dregs tests. The spring thickness was dictated by utilizing geo-electric strategy and the point estimated thickness of spring. It was seen that lone 8-12% of the investigation zone was discovered appropriate for artificial recharge. The recharge incited with a money order dams and rock pits are famous techniques in numerous nations and a hydrological model was created (MartinRosales et al 2007) utilizing the bend number strategy (CN) using HECHMS, a product (USACE 2000) to evaluate groundwater recharge in semi parched zone in the area of Almeria, South Eastern Spain. The outcomes demonstrated that the extent of spillover penetrated through the check dams fluctuated from 3% to over half as per the viable volume of water dammed and the substrate. The reenactment additionally recommends that the recharge forms in these situations are firmly connected to rambling tempest occasions.

Bouwer (2002) broke down the artificial recharge of groundwater utilizing hydrogeology and building perspectives. It was seen that the artificial recharge

is progressively utilized for short or long haul underground stockpiling and the artificial recharge requires porous surface soils. Artificial recharge assumes a significant job in water reuse and in water system. It was likewise seen that since soils and underground developments are naturally heterogeneous, arranging, structure and development of groundwater recharge plans must be piecemeal, first testing for deadly defects and general practicality and afterward continuing with pilot and little scale frameworks until the total framework can be planned and built.

The artificial recharge through wells can demonstrate to be an extremely valuable boundary to capture ocean water interruption has been researched by Dharmesh Mashru (2006). It was seen in this examination, that the recharge well is the center instrument of reviving the groundwater for a wide range of water assortment techniques - check dams, downpour/rooftop water collecting, water logging territories and so on. The significant thought for structuring a recharge system are the area, compelling head, water powered harmony and the furthest reaches of recharge pressure on spring. The examination additionally prescribed that twofold the length of screen ought to be utilized in a recharge well when contrasted with a siphoning admirably of a similar size to have higher pad in screen length and to control the passage speed to lessen incrustation.

ARTIFICIAL RECHARGE AND GROUNDWATER RESPONSE

The reaction of the groundwater in the spring was likewise a zone of enthusiasm for some examinations. The groundwater, its variances and changes after some time are a portion of the parameters utilized to think about the reactions of the springs to various recharge strategies and hydro geographical conditions.

Aish and DeSmedt (2009) demonstrated a groundwater hill coming about because of artificial recharge in the Gaza strip, Palestine to decide if the proposed release of treated waste water to unconfined spring would be achievable or would cause over the top mounding of the water table. It was seen that the shape and tallness of the hill relies upon a few variables including the recharge rate, pressure driven conductivity and thickness of the spring in the region. Expository and numerical models were applied for computing groundwater mounding profile. The field and model outcomes were seen as in great understanding and it was anticipated that following 100 days, the most extreme ascent of the hill would be 14 m in the focal point of the invasion lake and around 12 m at the edges.

Hiroto (1999) considered the artificial recharge of groundwater in Yamagata city, Japan and

assessed three sorts of groundwater artificial recharge offices of reservoir, well and pit techniques. The groundwater artificial recharge offices of two bits of reservoir technique, forty bits of well strategy and one thousand spots of pit strategy are working. The determined absolute groundwater recharge is around 14,40,000 m³ expecting 6% of the siphoned groundwater is thought to recharge underground since yearly siphoned sum is around 25 million m³. In another novel investigation, water siphoned at a pace of 1000 l-s in a quarry lake in the City of Milan, Italy to prevent the ascent of groundwater level was broke down by Beretta et al (2004). This was done to assess the impedance of the underground structures in urban territories of the city. The 35 water pulled back was released into the artificial channels utilized for agrarian practices. The aftereffects of this examination affirmed the monetarily lower costs contrasted and customary arrangements, for example, waste by wells. This likewise effects affected the improvement of surface water quality. A groundwater model of the zone was created and executed to assess further situations of release rates and siphoning areas.

OBJECTIVES OF THE STUDY

1. To analyse downpour water collecting and recharge program executed in India to survey their adequacy and job on groundwater assets.
2. To investigate changes in groundwater science and quality in India.

RESEARCH METHODOLOGY

The present investigation in Chennai city comprised of the field perceptions, information on downpour water reaping structures introduced in the city and assortment of information on groundwater levels and quality to assess their handiness in expanding groundwater in Chennai city. This examination is proposed to assess the viability of the RWH estimates actualized by the offices of the Government of Tamil Nadu, private associations and individual houses in Chennai city during 2002-04.

This assessment of the investigation prompts a comprehension of the significance of the groundwater evaluation as far as the recharge forms. The adjustments in stream headings, potential for recharge, spring stockpiling and parity seem significant in the structuring of appropriate RWH frameworks and establishment. Since groundwater displaying of the city spring requests a greater number of information and examinations than accessible, a pilot study was chosen to be led in a littler zone however in a point by point way. Such an examination can give more data required to the decision of right kind of structures, appropriate areas and deliberation example of groundwater. This

examination was directed in the grounds of the St Peter's Engineering College grounds with the structure, execution and assessment of RWH framework by the creator.

DATA ANALYSIS

The recharge has been determined by utilizing the water balance condition proposed by the Groundwater Estimation Committee (MoWR, 2010). The groundwater balance condition given by the panel for non order region is as per the following

$$S = RG - DG - B + IS + I$$

S = Difference in groundwater level between pre and post monsoon

RG = Gross recharge due to rainfall

DG = Gross groundwater draft

B = Base flow

IS = Recharge from streams

I = Net groundwater inflow into the area across the boundary (inflow-outflow)

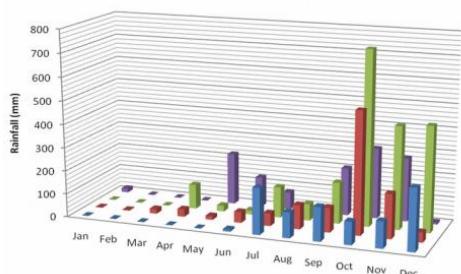

The recharge from precipitation for various areas of the nation and for various kind of springs was additionally given by the Committee. The recharge for alluvial territories is recommended as 16% and for sedimentary creation it is 12%. A 2 % expansion has been recommended to be utilized in zones where watershed advancement and soil protection measures are actualized, under natural conditions. The recharge values (under RWH) determined and the release determined dependent on the siphoning wells are given in Table 4.1

Table 4.1 Discharge (four wells) and recharge estimates of groundwater

Year	Discharge m ³ / day				Recharge mm/year
	Well 1	Well 3	Well 5	Well 6	
2004	10	3	200	195	140
2005	7	12	200	150	360
2006	3	18	150	120	400
2007	65	115	100	85	400

WATER LEVELS

The rainfall during the period of study in Avadi is given in Figure 4.2.

Figure 4.2 Monthly rainfalls received in Avadi region from 2004 to 2007

CONCLUSION

Expanded reliance on groundwater needs improved comprehension of spring management, recharge release issues, arranging siphoning rates and confronting water quality issues related with valuable uses (Al-Assad and Abdullah 2010). The structure, execution and assessment of RWH program has appeared to improve groundwater accessibility in the St. Diminish's Engineering College grounds. Such an endeavor may help leaders and organizers pick ideal management steps appropriate for nearby conditions in a metropolitan situation like Chennai city. The expanded accessibility of figuring force and demonstrating instruments, for example, visual MODFLOW grant the numerical representation of the groundwater condition with sensible exactness; to comprehend groundwater stream to such an extent that various situations of future deliberations and the job of artificial recharge program might be created. A few creators propose the utilization of recovered waste water in urban situations can likewise be beneficially utilized (Asano 2004, Shammas et al 2009, Lee 2010) in reviving the groundwater. Be that as it may, we ought to acquire further comprehension of the recovered waste water sway on the groundwater quality (Al-Assad and Abdullah 2010). In an examination on Salalah waterfront spring, Oman, the recharge of recovered waste water through parallel cylinder wells along the coast has been appeared to push back saline zone by 700mm (Shammas 2008) in a MODFLOW recreation of the spring.

REFERENCES

1. Abdul Azeez, S., Al Turbak and Fouad F.Al-Muttair (1989). "Evaluation of dams as a recharge method", Journal of Water Resources Development, Vol. 5, pp. 119-124.
2. Agarwal, A. and Narain, S. (2005). "Dying wisdom: Raise, Fall and Potential of India's traditional water harvesting systems", Centre for Science and Environment, New Delhi, pp. 1-404.
3. Aghazadeh, N. and Mogaddam, A.A. (2010). "Investigation of hydrochemical characteristics of groundwater in the Harzandat aquifer, Northwest of Iran", Journal of Environ Monit Assess, Online July, 2010.
4. Ahmadi, S. H. and Abbas Sedghamiz (2008). "Application and evolution of Kriging and Cokriging methods on groundwater depth mapping", Journal of Environ Monit Assess, Vol. 138, pp. 357-368.
5. Aish, A. and De Smedt, F. (2009). "Modeling of a groundwater mound resulting from artificial recharge in the Gaza strip, Palestine", Journal of Geophysics Research, Vol. 72, pp.1195-1205.
6. Al-Assad, T. A. and Abdulla, F. A. (2010). "Artificial groundwater recharge to semi arid basin : Case study of Mujib aquifer, Jordan", Journal of Environ. Earth Sciences, Vol. 60, pp. 845-859.
7. Anbazhagan, S., Ramasamy, S. M. and Das Gupta, S. (2005). "Remote sensing and GIS for artificial recharge study, run off estimation and planning in Aiyar basin, Tamil Nadu, India", Environmental Geology, Vol. 48, pp. 158-170.
8. Aqua Chem (2008). Management software for water quality and groundwater sampling data, Waterloo Hydrogeologic Inc, Ontario, Canada.
9. Asano, T. C. (2004). "Groundwater recharge with reclaimed municipal waste water: Health and regulatory considerations", Journal of Water Resources, Vol. 38, pp. 1941-1951.
10. Babcock, H. M. and Cushing, E. M. (1942). "Recharge to groundwater from floods in a typical desert wash, Pinal Country, Arizona", Trans. Amer. Geophys. Union, Vol. 1, pp. 49.
11. Ballukraya, P. N. and Ravi, R. (1995). "Hydrogeology of Madras city aquifers", J. Geol Soc India, Vol. 45, pp. 87-96.
12. Ballukraya, P. N. and Ravi, R. (1999). "Characterisation of groundwater in unconfined aquifers of Chennai city, India Part 1 – Hydrogeochemistry", J. Geol Soc. India, Vol. 54, pp. 1-11.

Corresponding Author

Vijay*

B.Tech (Civil Engineering), M.Tech (Transportation Engineering)

vijaydahiya12@gmail.com

Vijay*