Journal of Advances and Scholarly Researches in Allied Education
Vol. 16, Issue No. 5, April-2019, ISSN 2230-7540

A Study Optimal Model of Task Partitioning in a
Heterogeneous Parallel Computing

M. V. Kirankumar®* Dr. Anand Gupta®
! Research Scholar, Swami Vivekanand University, Sagar, MP
% Associate Professor Department of Computer Science, Swami Vivekanand University, Sagar, MP

Abstract — Optimal Task Partitioning with Duplication (OTPSD) restricts schedule duration just as the
overhead correspondence. Duplication of functions has reduced the overhead coordination of the
computational system. It is three step algorithms where the first stage requires the design of grain pack
Sub DAG. The following stage is a task process of need. The processors are grouped in the third stage by
their processing capacities. The proposed algorithm (OTPSD) constraints improve flexibility and display
efficiency over MCP and HEFT algorithms over uniform calendar length and processor usage.
Determined compute unified system architecture (CUDA) rendering length of OTPSD is (184.4 Sec)

shorter than MCP (215.6 Sec) and HEFT (196.3 Sec) algorithms.

Keywords: Task Partitioning, Optimal Model, Heterogeneous Parallel Computing

INTRODUCTION

Optimal Task Partition Model in Distributed Parall
Environment

Taking into account this representation of the
scheduling issue, there are two properties that must
be considered when analyzing any scheduling
system:

Consumer fulfilment of how well the scheduler
handles the source (performance) referred to, and

Customer fulfilment as to how inconvenient or costly
it is to use the administration resources itself
(effectiveness). At the end of the day, the consumers
need to have the option to rapidly and proficiently
access the real asset being referred to, yet don't
want to be obstructed by overhead issues related
with utilizing the administration Functions
themselves.

One side effect of this general scheduling problem
declaration is the convergence in the literature of two
words of common use. Between the terms
arrangement and distribution there is constantly a
verifiable requirement. Nevertheless, it seems to be
argued that these are merely elective interpretations
of a similar issue, The calculation was made for the
distribution of funds (from a capital viewpoint) and
the strategy was seen from the client's perspective.
Calculation and scheduling are therefore only two
concepts representing a common overall structure,
yet are presented from different perspectives.

PRAM model

It is a strong structure worldview supplier. PRAM
built from P processors, each with its own software
which cannot be changed. A single mutual memory
consisting of a collection of words, each of which
suits to contain a self-assured whole number.
PRAM model is a standard RAM machine
enhancement and used in algorithm analyzes. It
requires a read-only input card and a tape-only
feature. All directions in the guidance stream were
made simultaneously by all processors. It needs
unit time, stupid of processor count. Parallel
Random Access Machine (PRAM) Model of
computation comprises of a variety of lock
processors. [13]. Growing processor has a banner
in this model that determines whether or not it is
reactive while implementing a guidance. Inert
processors are not interested in the execution of
orders.

Shared Memory

g e e e

Figure: Shared-memory PRAM model

The processor ID may be used to identify machine
actions when running the basic software.
Synchronous PRAM vyields results in shared
memory by multiple processors to a similar area.
The fastest performance speed of this architecture
is used by utilizing Concurrent Read Concurrent

M. V. Kirankumar™ Dr. Anand Gupta“

www.ignited.in

1400

A Study Optimal Model of Task Partitioning in a Heterogeneous Parallel Computing [l

Write (CRCW) procedure. This is a simultaneity and
unambiguous model gage that shows how each
progression is operated[11]. It allows simultaneous
reading of common memory fields, and at the same
time writing instructions. Numerous algorithms can
be legally derived from PRAM algorithms for different
models, (such as the device model)[12]. The PRAM
configuration is classified according to the following:

1. Every processor must compose a similar
value in the Standard CRCW PRAM.

2. One procreator is arbitrary in writing in the
Arbitrary CRCW PRAM.

3. Processors have similar requirements in the
Priority CRCW PRAM and the device with
the greater need prevails in composing.

Task partitioning model in distributed scheduling
environment

The parallel computing system's task partitioning
technique is the main factor in choosing the ability,
Parallel computer device acceleration. The process
is divided into subtasks in which the performance of
each server determines the extent of the task [9]. A
variety of activities will be linked to the output of the
computer operating in the distributed computing
program along these lines. System coordination
costs between tasks are an important factor used to
increase system performance [6]. Entomb types
coordination cost assessment requirements are
important for acceleration and turnaround time
upgrades. For delegate the function according to
productivity of the system the call procedure (C. P.)
is used. In this software cloud computer large
calculations can be wused. Each processing
component in effect executes each task, and all
activities can be carried out on any processing
device. Subtasks are imparted to one another in the
proposed model through data sharing. As a
consequence, data sharing decreases
implementation time. Such subtasks assign to the
repository that transfers the assignments to the
various nodes.

In order to record the runtime and Communication

costs of assignments, the suggested scheduling

algorithm is used. Thus a device embraces the

request bk MLGLIGD 55 follow:

a) P= PP Where Pi corresponds to the
cluster computing components

b) [?sl Where NxN is Topology Processors

c) Si.1<i<N. gpecify the speed of processor
P

d) TlsisN gpecify the start-up cost of
initiating message on *»

e) G;.1<i<N sgspecify the start-up Costs of
starting process on

Ky

J) Is the transfer rate connecting to

neighbouring processors over the bridge
% plus ?

The principal objective in structuring the parallel
algorithm is to achieve a huge level of parallelism.
We used C.P. for this function. (Appeal procedure).

Large Task
Uil i 47\ e
Sub Task H Sub Task hL ub Task I“&nﬂmk J

—

| Input Server

s Sl

— Tnter Pn;c_rs;
‘Communication
—___=__/_-\ LT
b _c.P'_H cr |

Figure: Proposed hierarchical model for
partitioning tasks

This process breaks prediction as well as data into
little tasks[14]. The proposed model has satisfied
the accompanying essential necessities:

1. In any case, on the target machine there
is one order for more coarse magnitude
than processors to stay away from later
systemic limitations.

2. Excess storage of data structure and
repetitive calculations are restricted which
lead to enormous adaptability for tests
with high performance.

3. Direct tasks typically have a similar size to
preserve the balance of the processors.

4. Number of tasks extends the problem size
feature which keeps away from the
limitations. It is hard to see more
processors taking care of huge problem

instances.
Total (t) Total Task |
DAG (H) DAG Height l
P Number of Processors
| MimcT | i I\iﬁmu?("om_;mtm_ional_'ﬁme_ T |
MaxCT Maximum Computational Time |
I MinCR | Minimum Computational Rate D
“MaxCR 4[I _Mmmaﬁlﬁu.ﬁungmﬁe— .
¥] Speed Up B .I
b-level Bottom Level of DAG
IHIE Serial execution portion of algorithm |

M. V. Kirankumar™* Dr. Anand Gupta®

www.ignited.in

1401

Journal of Advances and Scholarly Researches in Allied Education

Vol. 16, Issue No. 5, April-2019, ISSN 2230-7540

Table: Nomenclature for the proposed model for
partitioning the tasks

The model involves the existence in the framework of
an | / O variable (input / yield) connected to each
processor. With the aid of the Gantt diagram the
cycle time can be calculated. The processor function
network can be depicted using an undirected
diagram called the system map scheduler[7]. Cost of
completion of the programme may be notified as:

Total Cost = cost of communication + cost of
execution

Where, Cost of execution = Duration of time

Cost of communication= number of node pairs

w.1) so that “*** and proc (w) = proc ¥
Interprocess communication algorithm between
tasks

It is an impressive algorithm for scheduled tasks ™
Manufacturers. The algorithm generates a time

frame / That maps every assignment €V A

F Ly

Manager With some time to start . Time for

communication between the processor
Could be described as:

plus *,

comm. (i,j) = {0 fori = j otherwise 1}
task-ready (ji, 1, f): the time when all the messages from all task in N(v) have been
received by processor P in schedule f.
start time(y, {, f): the earliest time at which task v can start execution on processor P;
in schedule f.
proc(yt, f): the assigned processor to task p in schedule f.
start(y, f): the time in which task p begins its actual execution in schedule f,
task(i, 7, f): the task schedule on processor P; at time T in schedule f. If there is no
task schedule on processor P; at time t in schedule f, then task(i,t, fireturns the
empty task ©. [t's assumed that na(d) < n(p).

In this algorithm edge cut gain parameter is considered to caleulate the
communication cost amongst the tasks [9].
gain(i, j) = €.gain edge cut + (1 - €)
gain edge cut = edge cut actor / old edge cut

edge cut factor = old edge cut — new edge cut

Where € is used to set edge-slice change levels and
the workload equalization to include everything. The
lower estimate of € is accountable for a total increase
in transport costs.

Pseudo coding for algorithm proposed

start

. task(i, T, fl—, for all positive integers i, where / =i =Pandt =0

repeat

Let u be the unmark task with highest priority

fori = 1o Pdo

. compute b-level for all tasks

. schedule all tasks into non-increasing order of b-level

. compute ALAP, constructs a list of tasks in the ascending order of the ALAP
ume

9. task_ready(p, i,0) « max(start{p,f) + comm(proc(u £).i) + 1) +

gain(i,]) for each u
10, start_time{y, i, f— min 1, where task(i, 7. f) = ®and t = task_ready{(w.i,f)

%P LR

L 1. endfor

12. f(p) « (start_time(p, i, f) if

13. start_time(p,i,0) < (start_time(j,f), 1Sj<Pi=jor
start_time(yL, i, f) = (start_time(y,j, f) and
ny(task(i, (start_time(wi, f) — 1), D<= na(task(], (start_time(y,j,) — 1), f)
1<j=Pizj

14. mark task p until all tasks marked

15. endif

Low overhead Contact process

Due to the following factors, an algorithm can be
optimised over the target machine:

truth commi, Ty, j, T2) where 1 < i,j < P
Task switching on processor node by task plan ()

Already “" A Server Assignment Plan) Already

“ When the function is switched between the
various processors instead

truth total comm(i, j,7) where 1 < §,j = P

The result of the procedure above is to move the

whole task schedule to the node ™ Already o’
T2,

With the node Assignment Plan ™) Already ™,
everywhere =7,

The following operation is commensurate with
more than one switch activities:

Fact total comm(i, j, T}~ comm(i, 71, /, 2} YT T2 =T

Priority assignment and time start

calculation

phase

For the initial schedule, DAG's b-level estimate is
used. For evaluate the general time costs for the
image, the following directions have been used:

1. Construct a hist of nodes in reverse order(L;)
2. for each node g; eL; do

3 max =0

4, for cach child a. of a; do

5. if clai, ac) + b-level{a,) =Mthen

6. M =ciai, ac)+ b-level{a)

7. endif

8. endfor

9. b-level(a;) = weight(a)) + M

10. endfor

Typically b-level is compatible in the scheduling
process Until the node is built. b-level and
professional documents timetables an overview of
the sliding proposal depends on the topology used
on the target system to quantitatively execute the
planned technique. This understanding can trigger
the end that, for all tests, b-level produces best
results. The algorithm uses the start time feature
ALAP (as late as possible) to calculate how far the
start time of the node can be postponed without
extending the duration of the schedule.

www.ignited.in

M. V. Kirankumar™ Dr. Anand Gupta“

1402

A Study Optimal Model of Task Partitioning in a Heterogeneous Parallel Computing [l

The method for measuring ALAP shall be as
follows

. construct ready list in reverse topological order (M)
. for each node a; eM; do

min = k , where k is call procedure{C.P.) length
Sfor each predecessor a. of a; do

. ifalap(ac) - elae, ai) <k then

k = alap(a,) - c(a, a;)

endif

endfor

. alap(a;) = k - wet (a:)

10. endfor

N Y Y

As demonstrated by the need for nodes, activities in
distributed computing system are allocated on the
processors. The ALAP time is recorded and a
rundown of tasks is generated afterwards in climbing
ALAP time order. Bonds were split by recognizing
ALAP time of mission predecessors.

Returns from the above-mentioned certainties
demonstrate that the proposed model is optimal. The
Command service. &m.J. =) Within schedule f of tasks
the flexibility of scheduling each task (w) is
maintained

fiw) = (p, 1) Where *<®/ and '~ -1

2. The viability of plan f in the model suggested
increased for any arrangement of activities

fiw) = (p, ©1) Wherepﬁ{f.}'} and ™

(i, Ty, j, 72)

3. The operation comm. and

na(total commi, j, 7)) = na(task(i, 7., f))

Optimisation of

shows
any work plan (w)

flw) = (p, Tl}Wherepz{lJ} and vt

4. The role commits. /T Maintains the
viabilty —of any work plan (w)
fw) = - Tywhere "< ang v =t

5. The operation comm. @D Also
demonstrates optimality of any work

schedule (w) ') =™ where ¢1"/ and ¥

PREEMPTIVE TASK PARTITIONING
STRATEGY Of FAST DISTRIBUTED
SYSTEMS IN HETEROGENEOUS

Non-preemptive methodologies for scheduling[1, 6,
9, 8, 3] have been discussed in literature. Several
extraordinary algorithms of non-emptive schedulation
involve Revised essential paths[10], Earliest Time
First(EFT)[2], and Dynamic Level Scheduling (DLS).
The algorithm Preventing Task Planning (PTS)
indicates lower scheduling expense and the optimal
task balance over the conventional planning
algorithms. The time unpredictability of PTS
correspunds to the time uncertainties of the MCP,
HLEFT, ETF, DLS algorithms and the time of

turnaround and CPU use in these scheduling
algorithms determines process performance. The
FCFS planning reveals the most terrible split in
regular tasks than SJF[18]. Starvation issue may
occur in FCFS in view of the fact that it may take a
long execution time for certain long occupations with
more need than short employments. This problem
reveals long delays and extremely low throughput.
The reasonableness criterion for profession shows
better outcomes in the non-pre-emptive scheduling.
Unmistakably, FCFS is less realistic than FCFS
because of issues with malnutrition. According to the
duration of a later developing career, the uncertainty
may decide the prestige of the profession. The
project is deemed uncalled for considering the
probability that the real start of the task is more
noteworthy than its reasonable start time. FCFS
programming algorithms are not different than
other programming algorithms in each situation.
10].[10]. In the execution of the protocols, the
complexities of the algorithms are persisted. In all
performance tests, low times dynamics show
great results[5, 4, 7]. Timetable costs correlate to
the number of computers that are used to arrange
various activities. Because of the increasing
number of processors, this is an important issue
for advanced use. The aggregation process can
be speeded up with a timetable with afast pre-
emption. Procedures must be begun as quickly as
time permits for minimization of execution time. In
the event that the holding up time is shorter, at
that point turnaround time then it additionally
influences the most punctual brief timeframe of
processing. Consequently throughput is expanded

if the most punctual beginning time is diminished.
Pre-emptive scheduling might be classifications in
the accompanying classes:

Priority based pre-emptive preparation

Tasks are assigned to the processors in these
schedules as shown by their needs.

Sharing resources

The sum total of what tasks have been distributed
to the processors all the while. Each task receives
the equivalent amount of time to execute strings.

Implementation of pre-emptive methodologies by
list, shares low level overhead exchange.

Sharing resources

Thanks to the subsequent contemplations, the
pre-emptive scheduling use of capital increased.
Such issues are kept away from the gridlock
because of ordinary capital pre-emption’s.

1. The planned algorithm must Fulfill the
parallel processing criteria..

M. V. Kirankumar™* Dr. Anand Gupta®

www.ignited.in

1403

Journal of Advances and Scholarly Researches in Allied Education

Vol. 16, Issue No. 5, April-2019, ISSN 2230-7540

2. The method should have a strong NSL and
overhead coordination.

3. For multicentre environments, the algorithm
achieves high performance and low reaction
times.

4, An asset will keep all things considered one

task at each moment.

5. Through asset scheduling algorithms a
strategic buffer from the gridlock state has to
be preserved. To insure the non-appearance
of a halt condition, one condition from below
must be met at any point.

a) Resource allocation should be in non-
sharable mode. Any resources taking an
interest in the multiprocessing system
Multiple tasks should not be shared.

b) If resources are transferred to a specific task
is unlikely to hold up another task at that
stage until it is discharged by assigning
tasks.

c) The resources ought not be designated in
the round way (First distributed asset
mentioned by last asset and second
dispensed asset must be mentioned first

asset, etc.)
d) No-pre-emption condition must be fulfilled.
6. The suggested algorithm satisfies the need

for pre-emption and it is capable of planning
the vast number of tasks all the time.

For DAG-based proactive preparation, a halfway
section of the task may be allocated to the specific
processors [12, 11, 17, 15], although dispensed
processors cannot be re-assigned until it completes
delegated tasks due to no-pre-emptive scheduling.
Adaptability and the use of the pre-emptive
scheduling tools is more hypothetically than non-pre-
emptive scheduling. Re-dragging out the missing
portion of the task causes additional overhead for all
purposes. Preemptive scheduling demonstrates
polynomial time configurations while NP-complete
was shown to be non-preemptive[16]. Alternatively
NP-complete scheduling of redundancy on separate
processors. Communication delays among the
preventive activities are gradually due to processor
preemptions. Pre-emptiveand non-preventive
methods of standard architectural computers
explored in[14]. Without the prior mandation, the two
approaches used different features. For proactive
and non-proactive scheduling, Wang[13]
incorporated the preceding conditions into DAG. The
most opportune item they have introduced in the
preparation of the list.

Proposed preemptive routing algorithm

1. Assigneach t; —= P,
2. for all processors
generate priority queue(t;) = B
sort ascending EST(t;) = P,
endfor
. calculate AvgFT (t;) for Py,
while(ready-list not empty) do begin
Select task t; (highest priority) from priority queue;
Select the processor P;for task t;according to EST;
Assigned t; - Fj;
Delete task t;from the ready-queue;
Update ready-queue;
10. Compute FT all unscheduled tasks;
11, Schedule smallest FT tasks;

R T

12. Move task t; & Fy;
13. end while

Scheduling Algorithm overview

The suggested scheduling algorithm combines two
stages. The requirements are assigned to the tasks
in a first step as shown by their time of contact and
execution. Though Earliest Start Time (EST) was
calculated in the second phase, tasks are booked
as per their processing capabilities on the
processors. The most rapid processor is used for
each model's function. The knots are arranged into
their order of Early Start Time. The first node is
numbered (0) with a greater need. In the normal
number order, the first necessary nodes are
counted. There is no dependency amongst the
nodes in the wake of allocating the needs. If
reliance is detected, the new task group will be
created to evacuate the nodes ' reliance. As such
dependence on the DAG tasks is evacuated and
these tasks were autonomously carried out.

In the midst of figuring out most timely start time
tasks are assigned to the processors selected. It is
ejected from the prepared line at the moment when
the task was completed at that point. Once the
activities are cancelled, planned line is renewed.
The majority of the functions are listed as follows:

FT = tozec time + min [EST;j+ FT;) (7.1)

Tasks with the Ilowest completion time are
scheduled before the next minimum completion
time. Because of the preemptive design of the
assignments they will switch between computer
processors. Due to the ideal and rapid pre-emption
of tasks on the group of heterogeneous
processors, the inactive time of the processors
decreases.

Symbol Definition

t)) i™ Task

Py Fastest Processor

‘ B Selected Processor

Pant All Processors

E?T,, | Earliest Staring Time of ™ task upon J" processor

—————p 5
Finish Time of i" task upon J" processor

Table: Nomenclature in FTPS model

M. V. Kirankumar™ Dr. Anand Gupta“

www.ignited.in

1404

A Study Optimal Model of Task Partitioning in a Heterogeneous Parallel Computing [l

Running Time vs Number of Processors

80
= PIPS
" (3.
0
& l MY
, 1 M N
R 16 1024

12

Running Thoe (sec)

N«lm(ﬁn of hnf‘é‘\”w s

Figure: Time running vs. number of processing
processors

CCR vs Average NSL at p=4

et |4 4

\ ¥ T]

' ‘ { | | PTPs

AverageNSL

CCR

Figure: CCR vs. cumulative weighted analysis of
the duration of the cycle at 4 processors

CCRvs Avg NSL at p=8

i MCT?
-

s

Average NSI

CCR

Figure: CCR vs. average standard plan duration
study at eight processors

CCRvs Avg NSL at p=16

Average NSL
$ i
15

Figure: CCR vs. average standardized schedule
analysis of 16 processors

CCR vs Avg NSL at p=32
== MCP
~a— s

R

Average NS

Figure: CCR vs overall structured system length
study for 32 processors

CCR vs Avg NSL at p=64

2 —t—MCP
1

" - ~-
€

Average NS1

PTs

1 15
CCR

Figure: CCR vs. cumulative weighted analysis of

the length of the program at 64 processors

Figure: DAG Simulating Example
Process of experimentation

Reenactment-based research was carried out
against proven, undoubtedly understood FPS
algorithms (Fast Pre-emptive Scheduling) and
pre-emptive MCPs (Minimum Critical Path). Figure
(22) displayed the span of runtime (Sec) for the
different processors. It can be very well seen that
MCP displays enormous processing power (4, 16,
64, 256, 512 and 1024) in the study of algorithms
of FPS and PTPS programming. Although PTPS
is not exactly 11.91 percent FPS running period.
Figure shows regular behavior (NSL) against the
values of a CCR run (0,2, 0.5, 1, 1.5, 2.5, 5, 10).
The standard NSL confidence is also increased as
CCR values are established. At a maximum value
of CCR= 10 for p= 4, the PTPS NSL calculation
falls by 11.41 percent and 33.56 percent
respectively by FPS and MCP. This gage on the
possibility that communication costs will increase,
at this point the overhead will expand further. The
findings of the suggested algorithm for the
processor spectrum (P = 4, 8, 16, 32, 64) have
been calculated. Figure indicates that optimal
results were obtained from the different number of
processors by the PTPS algorithm. It could be
seen that on the off chance that the number of
processors will increase, the standard NSL
confidence will continuously decrease at that
point. PTPS reveals improved performance in the

M. V. Kirankumar™* Dr. Anand Gupta®

www.ignited.in

1405

Journal of Advances and Scholarly Researches in Allied Education

Vol. 16, Issue No. 5, April-2019, ISSN 2230-7540

FPS algorithms and pre-emptive MCP scheduling
algorithms looked at.

PERFORMANCE
HETEROGENEOUS
COMPUTING SYSTEMS

EVALUATION OF
BISTRIBUTED

Two results in the distributed picture estimation and
logical computation tend to fascinate people,
execution times when the computer program size is
fixed and sized. The machine size is decreased in
both situations. The size capacity of the device is
determined by raising the machine size to schedule
the current task problem of a given size, while the
scaling output (versatility) tests the potential of a
parallel system to improve the performance of the
application size and system size. Test the principle of
speedup and performance emerged in the Amdahl's
theorem for the fixed-size output in a standardized
computing environment. In addition, for parallel
calculation adaptability steps, there are several
efficiency metrics, including the inactivity metric[1]
which all evaluate a parallel output while comparing
sequenzial calculations with a single processor node
as an outlook basis. Conversely, a comparable
reference base does not exist in a heterogeneous
computing system.

Homogeneous computation is considered a special
heterogeneous method for this reason. In order to
accommodate all sorts of performance evaluations,
heterogeneous models and measurements should
be fairly broad in that direction. A few speeches have
been circulated around heterogeneous system
speedup concepts, e.g.[2, 3, 4, 5]. The descriptions
in[2, 5] combine the computational highlights of the
two forms, where the acceleration of a heterogenous
computation is described by the time ratio of a
program that runs on the fastest processor to a
heterogeneous computer. This definition is ideal for
general heterogeneous computing and is compatible
on a normal speed-up computer. Be that as it may,
organize complexity and its contents have not been
designed and studied quantitatively. Likewise, other
similar efficiency concepts for heterogeneous
machine computation, such as super-straight
speedup, competitiveness and adaptability, should
be officially characterised. Various heterogeneous
systems meet various computing requirements. [4]
misuse various kinds of parallelisms from different
types of multi-PCs associated with a system. In this
section we concentrated on the performance
problems of a heterogeneous workstation device.
The ideas may also be stretched out to assess
heterogeneous systems of different types. In this
segment, we present models for measuring
workstation heterogeneity and representing the
results. Heterogeneous computing is characterized
by speed, competency and adaptability.

A heterogeneous system of workstations system is
regularly a non-committed system. Consequently,
The effect of variability and time sharing should be

taken into account
efficiency metrics.

in heterogeneous computer

COMPUTION MODELS HETEROGENEOUS
A heterogeneous configuration of the network

A heterogeneous network (HN) may be the target of
a related map H N(M, C), where:

M= (M. M. Ml |S @ heterogeneous collection of
workstations (m is the number of workstations). For
each workstation, the capacity of their CPU, I / O and
memory access speed decides the calculation
maximum.

C is normal workstation interconnection networks,
For eg, an Ethernet or an ATM with similar data
transmission capacities on the interface between a
few workstations.

Depending on the above description, if there are
many identical workstations in a workstation
network, The program is then standardized. A
heterogeneous machine can be divided into two
different classes: a system dedicated to executing
simultaneous activities at each workstation, and a
non-committed system of standard workstation
(also regarded as the proprietor's working load)
and only inert CPU cycles are used to execute
concurrent work tasks. The word a workstation is
used by the owner to describe the workload rate of
the owner. Our model of program execution
recognizes that each workstation will execute all
things considered to be one function for parallel
work. This supposition is reliable with the
programming rule that a PVM program is recorded
as a hard copy.

Heterogeneous example of programming

A parallel system is agreed to have m
assignments, where | represent its input parameter.
Ay (B, AL, ., An(l). Task A1) (1<i=m) Are

delegated and performed at workstation *: The
system size A(l) is defined as A(l) I, which can be
described as the number of planned tasks to be
interpreted as A()[1]. A®I= XLIAOD gt will
disentangle documents completely on the off
chance we plan to integrate the system parameters
for each case in the remainder of this segment. We
truly say An (I) when we compose A along these
lines.

Let S Be Mi to Fathom A Workstation level.
Devoutly. To define our target heterogeneous
structure, we add a logical limitation: velocity is a
constant for a given computer software A. Since
most of the operations of various computer
systems are carried out efficiently on a workstation
class of different rates, e.g. the Sun workstations.
Through our descriptive analyzes on a
heterogeneous network of workstations, we will

www.ignited.in

M. V. Kirankumar™ Dr. Anand Gupta“

1406

A Study Optimal Model of Task Partitioning in a Heterogeneous Parallel Computing [l

tentatively prove that the computation speed in every
workstation remains constant. The pace function is
the normal number of tasks per second of different
sorts to execute a program.

To prevent mistaken calculations of the velocity, we
describe a force weight #i (4 (A) To run Programs A.

On the workplace " The following:

Wi A)=- 5,(A)

———— i=1,......, m 1
max'_ {5, (A)} ' ()

Equation (1) indicates that a workstation's force
weight corresponds to its working speed as opposed
to the system's fastest workstation. The tire strength
weight calculation is less than or equal to 1 Since the
force weight is a proportional proportion, the
approximate execution time can also reflect this. If
one of the main tasks for each time unit, the force
weight of every working station shows a relative
speed, the speed of the machine is called one of the
important tasks. If 7 M: provides time for running
the workstation software M; By deliberate time of

execution as follows, strength weight can be
determined:

ey ming {T0A,M)} '
WilA) T(AM,))
CONCLUSION

A major proposal was proposed with the existing
work partitioning schemes. This quantitative review
explains that all heterogeneous distributed
computing systems don't have a flawless function
division approach. Scheduling methodologies
performances rely on the basic architectures. We led
the exploratory analysis of the possible models and
algorithms in the corresponding community. The
Directed Acyclic Graph (DAG) was used to perform
all the studies. For partitioning functions, we
suggested an iterative model and three algorithms.
Three algorithms, composed of three equations, are
hierarchical in nature. One suggested an algorithm of
contrast (OTPSD) and MCP and HEFT algorithms.
The implementation period and NSL trust are smaller
than expected to be the algorithm. The following
complicated algorithm (TPSMT) is suggested. It has
been contrasted with HEFT and CPFD algorithms.
For standard SLR vs CCR values, the results of the
tests show better efficiency. Relative to individual
HEFT and CPFD, TPSMT's normal performance is
equivalent. The third proposed method s
precautionary. The algorithm (PTPS) is comparable
to precautionary MCP and EPS algorithms. We saw
that the NSL's standard calculation of the number of
different processors isn't regarded as algorithms.
This result shows that trust in NSL declines when the
amount of processors rises compared to that. The

concerns raised in the proposal could be extremely
committed to the parallel computing field.

REFERENCES

Willis C., Watson R., Tarboton D. G. et. al. (2013).
Parallel flow-direction and contributing area
calculation for hydrology analysis in digital
elevation models [C]. In: The 2009
International Conference on Parallel and
Distributed Processing Techniques and
Applications, Las Vegas, Nevada, USA, July:
13-16.

Mower J. E. (1994). Data-parallel procedures for
drainage basin analysis [J]. Computer &
Geosciences, 20(9): pp. 1365-1378.

Clematis A., Coda A., Spagnuolo M. (1997).
Developing non-Local iterative parallel
algorithms for GIS on a workstation
network [J]. Recent Advances in Parallel
Virtual Machine and Message Passing
Interface, 1663: 435—442.

Barton E. Cramer, Armstrong M. P. (1999). An
Evaluation of Domain Decomposition
Strategies for Parallel Spatial Interpolation
of Surfaces [J]. Geographical Analysis,
31(2): pp. 148-168.

Huang F, Liu D S, Tan X C, et. al. (2011).
Explorations of the implementation of a
parallel IDW interpolation algorithm in a
Linux cluster-based parallel GIS [J].
Computers & Geosciences, 37: pp. 426—
434.

Song X, Dou W, Tang G, et. al. (2013). Research
on data partitioning of distributed parallel
terrain analysis [J]. Chinese Journal of
National University of Defence
Technology, 35(1): pp. 130-135.

Gary. E. Christensen (1998). MIMD vs. SIMD
parallel processing: A case study in 3D
medical image registration, Parallel
Computing 24 (9/10), pp. 1369-1383.

Feitelson D.G. (1997). “A Survey of Scheduling in
Multiprogrammed Parallel Systems”,
Research Report RC 19790 (87657), IBM
T.J. Watson Research Center.

Jia-X. Z.; Wei M. Z. (2000). “A DAG-based
partitioning-reconfiguring scheduling
algorithm in network of workstations,
“High Performance Computing in the
Asia-Pacific Region, 2000. Proceedings.
The Fourth International

M. V. Kirankumar™* Dr. Anand Gupta®

www.ignited.in

1407

Journal of Advances and Scholarly Researches in Allied Education

Vol. 16, Issue No. 5, April-2019, ISSN 2230-7540

Conference/Exhibition on, Vol. 1, pp. 323-
324

Andrews J. B. and Polychronopoulos C. D. (1991).
“An analytical approach to performance/cost
modelling of Parallel computers”. Journal of
Parallel and Distributed Computing, 12(4):,
pp. 343-356.

Menasce, D. A., Saha, D., Porto, S. C. D. S,
Almeida, V. A. F., and Tripathhi, S. K.
(1995). “Static and dynamic processor
scheduling disciplines in heterogeneous
parallel architectures”. J. Parallel Distrib.
Comput. 28, 1, pp. 3-6.

Gajski, D. and Peir, J. (1985). “Essential Issue in
Multiprocessor”, IEEE Computer Vol 18,

No.6 , pp. 1-5.

Menasce, D. A., Porto, S. C.,and Tripathi, S. K.
(1994). Static heuristic processor
assignment in heterogeneous message

passing architectures. Int. J. High Speed
Computing, pp. 114-135.

Shmoys D. B., Wein J. and Williamson D.P. (1995).
“Scheduling parallel machines on-line”. SIAM
Journal on Computing.

Nelson R. and Towsley D. (1985) “Comparison of
threshold scheduling policies for multiple
server systems,” IBM, Research. Report.

Feitelson D.G. and Rudolph L. (1995). Parallel task
scheduling: Issues and approaches. In
IPPS’95 Workshop: Task Scheduling
Strategies for Parallel Processing Springer—
Verlag, Lecture Notes in Computer Science
LNCS 949, pp.1-3.

Kwok Y. and Ahmad |. (1999). “Static Scheduling
Algorithms for Allocating Directed Task
Graphs to Multiprocessors”, ACM Computing
Surveys 31(4), pp. 406471

Yu-Kwong K. and Ishfag A. (1997). “Efficient
Scheduling of Arbitrary Task Graphs to
Multiprocessors Using a Parallel Genetic
Algorithm”,Journal of Parallel and Distributed
Computing, pp. 1-3.

Grewe D.and M. F. O’Boyle (2011). A static task
partitioning approach for heterogeneous
systems using OpenCL. In CC'11.

Corresponding Author
M. V. Kirankumar*

Research Scholar, Swami Vivekanand University,
Sagar, MP

M. V. Kirankumar™ Dr. Anand Gupta“

www.ignited.in

1408

