

# Evaluation of Phytoextracts Against Pathogens of Black Point Disease of Wheat Grains

Dr. Sarika Yadav\*

Assistant Professor, Department of Botany, Agra College, Agra

**Abstract –** The black point of wheat is an important disease caused mainly by *Alternaria alternata* and *Helminthosporium sativum*. It leads to the blackening of the germinal end of wheat grain and causes a significant loss in grain germinability, seedling growth, and nutrient quality of wheat. Phytoextracts of leaves of 10 plants caused variable inhibition of mycelial growth of aforesaid two pathogens. Phytoextracts of *Azadirachta indica* caused 97.8% and 98.2% inhibition of mycelial growth of *Alternaria alternata* and *Helminthosporium sativum* respectively and adjudged best for control of black point disease of wheat. Further extract of leaves of *Eucalyptus globus* caused 84.8% and 96% inhibition of mycelial growth of two pathogens. However, the leaf extract of *Tridex sp* caused minimum inhibition of mycelial growth of *Alternaria alternata* and *Helminthosporium sativum*. The phytoextracts have no residual toxicity and are ecologically safe, hence they can be used for a safe and cheap method of control of black point of wheat.

**Keywords;** Wheat Black Point, *Alternaria Alternata*, *Helminthosporium Sativum*

## INTRODUCTION

In India, wheat occupies the prime position among food crops. It is the second important food crop being next to rice in the world. The wheat grains are exposed for a fairly long period during the growth of crops and are easily vulnerable to the attack of fungi as compared to the seeds born in pods or other kinds of fruits. Amongst the various fungi which invade wheat grain in the field, infection by *Alternaria alternata* and *Helminthosporium sativum* has been found associated with blackening of the germinal end of wheat grain and causes a disease commonly referred to as "Black Point". In India, this disease is prevalent in almost all the states, where wheat crop is grown (gaur 1986). It causes a significant loss in grain germinability, seedling growth, and nutrient quality of wheat.

The different strategies for plant disease control include the use of fungicides, biological control, and cultural practices. In the recent past, plant-based products have been found to possess antifungal, antibacterial, and antiviral properties. The use of phytoextracts has been added advantage of little interference to biological equilibrium and no residual toxicity, hence hold a great promise to manage various diseases (Cook & Baker 1983; Sarvamangla et al 1993). It was, therefore, considered worthwhile to study the efficacy of phytoextracts of 10 wild plants found near wheat fields.

## MATERIALS AND METHODS

The pathogens of black point disease viz., *Alternaria alternata*, and *Helminthosporium sativum* were obtained by plating 100 discolored grams on PDA medium following agar plate technique (ISTA, 1966). The pathogens were purified and maintained in PDA slants. Aqueous extracts of leaves of 10 wild plants viz., *Adhatoda vasaca*, *Azadirachta indica*, *Arzemone Mexicana*, *Cassia tora*, *C. occidentalis*, *Eucalyptus globus*, *Sonchus as para*, *Senebiera Didyma*, *Solanum nigrum* and *Tridex sp* with 50 ml sterile water by grinding 50-gram leaves and then filtered through the double layer of muslin cloth were obtained these extracts were added to PDA to obtain the desired conclusion and was autoclaved 5mm mycelial disc taken from the periphery of the fresh culture of pathogens was placed in the center of Petri dish and incubated at 28 + 1 degree C for 8 days B.O.D incubator. The untreated set served as control. After the incubation period, the diameter of the colony was recorded and present inhibition in fungal growth was calculated. Suitable replications were maintained for each treatment as adopted by Sarvamangla et al, (1993).

## RESULTS AND DISCUSSIONS

TABLE 1

Effect of phytoextracts on the growth of *Alternaria alternata* and *Helminthosporium sativum*

| S. No. | Name of Plants (Phytoextracts) | Inhibition %age of Mycelial growth |                                 |
|--------|--------------------------------|------------------------------------|---------------------------------|
|        |                                | <i>Alternaria Alternata</i>        | <i>Helminthosporium Sativum</i> |
| 1      | <i>Adhatoda Masaka</i>         | 74.5                               | 77.2                            |
| 2      | <i>Azadirachta indica</i>      | 97.8                               | 98.2                            |
| 3      | <i>Arzemone Mexicana</i>       | 63.4                               | 74.0                            |
| 4      | <i>Cassia tora</i>             | 60.0                               | 65.7                            |
| 5      | <i>Cassia occidentalis</i>     | 80.8                               | 88.2                            |
| 6      | <i>Eucalyptus globus</i>       | 84.8                               | 96.0                            |
| 7      | <i>Sonchus aspara</i>          | 62.8                               | 70.2                            |
| 8      | <i>Senebiera didyma</i>        | 53.6                               | 56.7                            |
| 9      | <i>Solanum Nigrum</i>          | 47.2                               | 48.8                            |
| 10     | <i>Tridex sp</i>               | 45.5                               | 48.0                            |
| 11     | Control                        | -                                  | -                               |

A perusal of Table 1 indicates that phytoextracts of leaves of 10 plants caused variable inhibition of mycelial growth of 2 test pathogens. However, significant inhibition of mycelial growth was noted in phytoextracts of *Azadirachta indica*, *Eucalyptus globus*, *Cassia occidentalis*, and *Adhatoda Masaka*. The maximum inhibition was observed with phytoextracts of *Azadirachta indica* and the minimum inhibition was recorded in the case of *Tridex sp*.

Antifungal activities of phytoextracts have been reported by several workers (Dayaram, 1997, Kumar & Shabana 2002, Singh, 2008 and Ghasolia & Shivpuri, 2008). The plant species having more antifungal activities viz., *Azadirachta indica*, *Eucalyptus globus*, *Adhatoda Masaka*, and *Cassia occidentalis* are widely available near wheat fields in March when flowering occurs. So, the leaf extracts can be sprayed twice at a 15-day interval to avoid infection of developing grains, which will serve as the cheap and safe management of black point disease of wheat.

## ACKNOWLEDGMENT

The author is highly thankful to the Principal and Head of the Botany Dept. Agra College, Agra for providing facilities and constant encouragement. Also, the author would like to thank Dr. Surender Singh (Retd), it would have not been possible without his guidance and support.

## REFERENCES

- Cook, R.J., and Baker K. (1983). The nature and practice of biological control of plant pathogens. Ann. Phytopath. Soc. St. Paul, Minnesota, U.S. App 539.
- Dayaram, P. (1997). Fungi toxicity of some plant extracts against *Alternaria brassicas*, Anmol Agric Bio Res 2; pp. 25-26
- Gaur, A. (1986). Black Point of wheat. In; Problems and Progress of wheat pathology in South Asia Eds. L.M. Joshi, D.V. Singh, and K.D. Srivastava. Malhotra Publishing House, New Delhi. pp. 230.
- Ghasolia, R.P., and Shivpuri, A. (2008). Management of Sclerotinia rot of Indian mustard with plant extracts and fungicides. J. Mycol Pt. Pathol 38(2).
- ISTA (1966). International Rules for Seed Testing. Proc. Int. Seed Testing Association. 31; pp. 1-52.
- Kumar, V.R. and Shabana, P. (2002) Integrated disease management of leaf blight of wheat. Ann. Pt. Prof. Sci 10; pp. 302-307.
- Sarvamangala, H.S. Govidaiah, and Datta, R.K. (1993). Evaluation of plant extracts for control of fungal diseases of Mulberry. Indian Phytopath 46; pp. 398-401.
- Singh, A. (2008). Evaluation of bioagents and phytoextracts against Curvularia penneseti in pearl millet. J. Mycol Pt. Path of. 38 (2); pp. 396-397.

## Corresponding Author

**Dr. Sarika Yadav\***

Assistant Professor, Department of Botany, Agra College, Agra