

Bulk Modulus and Cohesive Energy of Zn, Cd, and Hg Monochalcogenides and Oxides

Dharamvir Singh*

Department of Physics, Agra College, Agra (UP), India

Abstract – The electronic, bulk, and elastic properties of Zn, Cd and Hg chalcogenides and Oxides have been discussed. The different actual properties like Ionicity, Bulk Modulus, and Cohesive Energy, have been processed and contrasted and the announced information. A conversation dependent on PVV hypothesis has been introduced for the determined homopolar hole (Eh), Ionic hole (Ec), Penn hole (Ep), Average hole (Eg), associating iconicity with 'Ec and Eg just as with different hyperfine communications.

INTRODUCTION

II VI group semiconductor AX (A= Zn, Hg; X = O, S, Se, Te) are currently 3 under intense investigations driven by their unusual properties just as their possible applications in electronic and optoelectronic devices as ultrasonic transducers, 'surface acoustic wave devices oxygen sensors. There has likewise been a developing interest in the investigation of these materials under high tension conditions, motivated by the need of synthesizing new solids with targeted physical properties (1,2,3). For understanding an assortment of physical phenomena, it is important to know the stretch and bulk E properties of crystals. The studies on structural phase transition, metallisation, cohesive, elastic and bulk properties under high pressure have attracted quite interest in Zn, Cd, and Hg chalcogenides over the most recent twenty years due to their applications in light emitting diodes (LED) and laser diodes (4). Structural what's more, electronic property of AX compounds have been ii: experimentally and theoretically during the past few years, however, the bonding, elastic and bulk property of these mixtures have been less studied (5). Almost all the AX compounds crystallize either in zinc blend or wurtzite structures, ZnS, ZnSe, ZnTe, CdS, CdTe, crystallize in both zinc blend, and HgSe, HgTe, crystallize in zinc blend structure only HgS crystallize in zinc blend and hexagonal Cinnabar Structure, and ZnO, has wurtzite structure, CdC has NaCl structure, HgO has Cinnabar structure (6-7). The common and dominant feature of these structures is that each atom of one kind is tetrahedrally bonded to four atoms of the other element. In zinc blend these tetrahedral are arranged in a cubic type structure whilst they are in a hexagonal type structure. Indeed the centers of similar tetrahedral are arranged in a face-centered hexagonal closed packed (hcp) array in the later (8).

Neumann (9) considered the mass modulus of salt halides regarding I spectroscopically defined covalency. We present in this note our examinations a Zn, Cd, and Hg, monochalcogenides and oxides. In this introduction, we assess the homopolar hole, ionic hole, normal hole, and henceforth the iconicity of these mixtures utilizing the modified Phillips and Van Vechten hypothesis (10, 11). The assessed estimations of Phillips iconicity, and Neumann scaling law (9) give us the estimations of mass moduli and firm energy for these mixtures.

THEORY AND DISCUSSION:

The term iconicity intrinsically characterizes electronegativity, bond length, electron density (12), flexible constants, bulk modulus, cohesive energy, effective charge etc. The relationships of iconicity had been arising from the isomer shift. Parameters used in Mossbaur effect. Phillips described the new depiction based on band structure. As indicated by the modified Phillips and Van Vechten hypothesis (P V V theory) (13, 14, 15), the average gap Eg is given by

$$E_g^2 = E_h^2 + E_c^2 \quad \dots \dots \dots (1)$$

$$E_h = 40.468 / r_{AB}^{2.5} \quad \dots \dots \dots (2)$$

$$E_c = b e^2 \left[\frac{Z_A - Z_B}{r_{AB}/2} \right] \exp(-Ks r_{AB}/2) \dots \dots \dots (3)$$

Where Eh and Ec are the contributions of homopolarity and heteropolarity to the AB bond, Z_A, Z_B are the valence states of atoms A & B, respectively Ks the Thomas- ' Fermi screening parameter, and b is an adjustable parameter given by b = 4 .089-N_C², where N_C is the average

coordination number (16) around the cation. Using the above relations Eh, Ec, and Eg, and hence the iconicity f_i ($f_i = Ec^2 / Eg^2$) is evaluated for these monochalcogenides.

Bulk Modulus:

The evaluated values of iconicity are used in the following relation proposed by Neumann for the evaluation of the bulk modulus:

$$B=B_0V^{-n} \quad \dots \quad (4)$$

Where n has the value 1.147 and the factor B_0 is given by

$$B_0 = b_0(1-b_1f_c) \quad \dots \quad (5)$$

Here $b_0 = 4.134$ and $b_1 = 2.877$, and f_c is the covalency $f_c = (1-f_i)$.

Using available crystallographic data (1, 17-23) for these compounds and following the modified PVV theory, the values of iconicity are calculated. The calculated value of iconicity are shown in table 1. The calculated values of iconicity and the relations (4) and (5) lead us to decide the values of bulk modulus. The determined values are shown in Table-2. The comparison between our calculated values and known experimental & theoretical values (1, 29-30) shows good agreement.

Cohesive Energy:

Using the Phillips iconicity the cohesive energy (31) is given as

$$E_c' = \frac{\log(1-f_i)T_m}{K} \quad \dots \quad (6)$$

Where f_i is the iconicity, T_m is melting temperature, K is adjustable parameter has values -3.63×10^2 . The result obtained by equation (6) is found in better agreement with experiment values (1, 24-26) compared to obtained.

Table 1: The determined estimations of homopolar energy gap(E_h), heteropolar energy gap(E_c), average energy gap(E_g), and precious stone ionicity(f_i) of Zn, Cd and chalcogenides.

Compounds	Zn	ZB	E_h	E_c	E_g	f_i
ZnO	2	6	7.400	14.346	16.142	0.789
ZnS	2	6	4.831	9.741	10.873	0.802
ZnSe	2	6	4.307	8.798	9.795	0.806
ZnTe	2	6	3.573	7.416	8.232	0.811
CdO	2	6	4.679	14.520	15.256	0.905
CdS	2	6	4.014	8.236	9.162	0.808
CdSe	2	6	3.642	7.535	8.369	0.810
CdTe	2	6	3.084	6.480	7.177	0.815
HgO	2	6	3.030	12.099	12.473	0.940
HgS	2	6	3.974	8.176	9.091	0.808
HgSe	2	6	3.607	7.487	8.310	0.811
HgTe	2	6	3.084	6.452	7.152	0.813

Table 2: The determined estimations of mass modulus (B) of Zn, Cd and Hg Chalcogenides and correlation with detailed tests, theoretical assessed estimations of mass modulus.

Compounds	f_i	f_{c*} (1-f _i)	$B_0=b_0(1-b_1f_c)$	Bulk modulus (kbar) calc	Bulk modulus reported experiment	Bulk modulus theoretical estimates
ZnO	0.789	0.210	1.633	837	748,750,769	1440
ZnS	0.802	0.197	1.785	535	595,647,624	592,613,640,683
ZnSe	0.806	0.193	1.834	468	500,509,528	440,452,472
ZnTe	0.811	0.188	1.893	374		386,402,434
CdO	0.905	0.094	3.014	1472	643,620	
CdS	0.808	0.191	1.851	431	530,550	595,615,694
CdSe	0.810	0.189	1.881	384	424,445	369,439,479
CdTe	0.815	0.184	1.937	312		332,355,356
HgO	0.940	0.059	3.432	517	686	450
HgS	0.808	0.191	1.860	426	486,497,576	649,655,664
HgSe	0.811	0.188	1.892	379	340,423,467	581,588,591
HgTe	0.813	0.186	1.921	313		464,467,478

TABLE 3: The calculated value of cohesive energy of Zn, Cd and Hg chalcogenides and comparison with reported experiments and theoretical estimated values of cohesive energy.

Compounds	f_i	$\log(1-f_i)$	Cohesive energy (E_c) [calc]	Cohesive energy (E_c) (reported experiment)	Cohesive energy (E_c) theoretical estimates
ZnO	0.789	-0.677	3.685		3.159,3.029
ZnS	0.802	-0.704	3.552	2.851,2.852	2.865,2.903,2.920
ZnSe	0.806	-0.713	2.988	2.698	2.754,2.756,2.741
ZnTe	0.811	-0.724	2.585	2.396,2.397	2.421,2.426,2.458
CdO	0.905	-1.026	3.469		2.903
CdS	0.808	-0.716	2.912		2.456,2.472,2.473
CdSe	0.810	-0.722	2.466		2.463,2.481,2.481
CdTe	0.815	-0.733	2.206	2.379,2.380	2.207,2.267,2.304
HgO	0.940	-1.229	2.369		2.980
HgS	0.808	-0.718	2.870		
HgSe	0.811	-0.724	1.595		
HgTe	0.813	-0.730	1.348		

CONCLUSION:

The modified PVV hypothesis has been applied to Zn, Cd, and Hg monochalcogenides. The assessed estimations of iconicity and the Neumann connection give us the estimations of mass moduli and durable energy for these monochalcogenide semiconductors. The great understanding between our determined qualities with the detailed exploratory and hypothetical information verifies the legitimacy of the above basic methodology for the assurance of mass moduli and durable energy.

ACKNOWLEDGEMENTS:

The creators might want to express gratitude toward Dr. S.C. Goyal & Dr. Seema Gupta (Department of Physics, Agra College, Agra) for proposing the first program and proceeded with direction throughout work and for some, supportive conversations identifying with the understanding of the outcomes. I'm likewise appreciative to executive of Central Library, IIT Delhi. Focal Library JNU Delhi Library of deptt. Science, AMU Aligarh, for their consideration of allowing me to utilize their material for this reason. Material from different sources has been incorporated for culmination.

REFERENCES:

1. Jivani A.R., Trivedi H J, Gajjar P. N. and Jani A. R. (2006). Indian J of Pure and Applied Physics 43, pp. 59-61.
2. Haj F. El. Hassan H. Akbarzadeh (2006). Science direct, Computational Materials Science pp. 423—43 1.
3. Khan M.K.R., Mozibur Rahman M, Javedmia S, Shahajhan S (2003). Indian J. of pure and applied Physic, 41, pp. 211-216.
4. Balwant S Arya, Mahendra Aynyas, Sanker P. Sanyal (2008). Indian J. of Pure and applied physics, 46, pp. 722-726.
5. Haj F. El, Hassan H. Akbarzadeh (2006). Science direct, Computational Materials Science 38, pp. 362—368.
6. AVEN. M, Physics and Chemistry of 2-6 compounds.
7. Ralph W.G. Wyckoff. Second Edition, Vol. 1 (Interscience Publisher).
8. Dinesh Varshney, Kinge R, Sharma P, Kaurav N and Singh R K (2005). Indian J. of Physics 43, pp. 939—951.
9. Neumann H. (1988). Crystal Res. Technol. 23, pp. 531.
10. Singh GP and Gupta V.P. (1985). Phys. Stat. Sol. (b) 129, k 153.
11. Singh DP and Gupta V.P. (1986). Phys. Stat. Sol. (b) 133, pp. 249.
12. Sheony, GK and Wagner, RE (1978). Mossbauer isomer shift, North Holland 'Pub. Co. New York.
13. Phillips J. C. (1967). Physics Rev. Letters, 19, pp. 415.
14. Phillips J.C. (1968). Physics Rev. Letters, 166, 832 (1968), 905, 912.
15. Van Vechtan (1969). J.A. Phys. Rev. 182, 891, (1969) 187, pp. 1007.
16. Phillips J. C. (1973). Bonds and Bands in semiconductors, academic press, New York.
17. C. Blair Urbana, Jr. Vol. 2, Comprehensive Inorganic Chemistry.
18. Sanderson, Inorganic Chemistry. ' . ,4;
19. A.F. Wells, Fourth Edition, Structural Inorganic Chemistry,
20. David R. Lide, 82 Edition, C R C Handbook of 1 (CRC Press New York). .
21. Sadao Adachi, Handbook on physical properties of semiconductors, Vol. 3.
22. George J. Janz, Molten Salts Handbook.
23. REMY H, Vol. 2 Treties on Inorganic Chemistry.
24. Delin A, & Kluner T. (2002). Physical review B-66 035117
25. Jivani A R, Trivedi H J, Gajjar P N, and Jani A R (2006). Indian J. Phys. 80 (2), pp. 177-180.
26. Dwight E. Gray, Third Edition American Institute of Physics Handbook (McGraw-Hill Book Company).
27. Liu H, Ho-Kwang, Somaizulu M, Yang Ding, Meng Y and Hausermann D (2004). Physical, Review B70, 094114.
28. Joseph R Smyth, Jacobsen S D, Hazen R M (2000). Reviews in Mineralogy, Vol. 40 Comprehensive crystal Chemistry, in press 2000.
29. Yadav D. S. & Singh D.V. (2012). Phys. Scr. 85 015701 (688).
30. Ahmad Sajad& Edi. D. V. Singh (2013). Arab J. Sci. Eng. 938), pp. 1889-1894.
31. Wci, S.H. and Zuger, Alen (1988). Phys. Rev. B (11).

Corresponding Author

Dharamvir Singh*

Department of Physics, Agra College, Agra (UP), India

dvsingh102@gmail.com