

Swati Gupta1* Dr. Ashish Chourasia2

w
w

w
.i
g

n
it

e
d

.i
n

2101

 Journal of Advances and Scholarly Researches in Allied Education
Vol. 16, Issue No. 6, May-2019, ISSN 2230-7540

The Imperative Study on XML Parsing and
Parsing Techniques

Swati Gupta1* Dr. Ashish Chourasia2

1
 Research Scholar, University of Technology, Jaipur, Rajasthan

2
 University of Technology, Jaipur, Rajasthan

Abstract – XML plays a very important role as a global data exchange interface. This requires XML
documents to be accessed by users. By using an XML parser, This compliance with the pattern preserve
to verified. The parser creates it simple to access the data and moreover guarantee so it is reliable.
Parsers can be contrasted by checking their compliance with the WWW Consortium's XML guidelines.
Thus, extracting data from XML documents and creating XML documents become important topics of
discussion. There are many APIs (Application Program Interfaces) available which can perform these
operations. In this paper we are analysis of different XML parsers is useful in assessing the consistency
and weaknesses of the objects. Different tests were conducted that contrast with gauges, speed,
memory use, etc. DOM is a bad memory because it needs to keep the entire record tree in memory,
rendering it unable to manage extremely large records. Objects in the DOM tree can addressed&
manipulated by utilizing approach on the objects.

Keywords – XML, Parsers, DOM, API, SAX, Parsing Techniques

- X -

1.1 INTRODUCTION

Mega knowledge is exchanging and distributing in
the present world, the XML is a very important
function as a global information exchange interface.
21th century is known as an era of information. Most
of the businesses are shifted on the internet. These
business transactions create huge amount of data.
Thus today, designing of data management system
is a major challenge for computer system which can
exchange the information between two different
applications or two different transactions over
internet. This operation is supported by an XML. As
an accepted standard for web-based data exchange,
an XML is growing. This helps clients to exchange
documents from XML. XML is competent to extract
information from an XML document that does not
contain any facts or information on the content. To
achieve this clarity, XML documents will adhere to
XML specifications[1].

This specific compliance can be verified by using an
XML parser. The parser makes the information easy
to access and also ensures that it is valid. Within
today's countless XML parsers, coded in a truth of
dialects, these parsers may not offer the comparative
output of parsing speeds, accuracy, and
preconditions for ability. They has two crucial aim to
parse XML are follows: tree and stream. Parsing of
the tree form requires stacking the entire XML

document in memory. The layout of the tree record
takes into account arbitrary access to the
components of the document and to modify XML.
Tree-type parsing instances include the DOM &
Simple XML. The DOM is the most recognizable
parser based on the tree. The simplest tree-based
code parser is Simple XML. Stream-based parsers
are so called in the light of the fact that they parse
the XML in a stream with a lot of the same basis as
spilling speech, operating with a common hub, and,
when finished with that hub, completely overlooking
its truth. XML Reader is a draw parser and you
likewise code the result table in a cursor for a
database query. It makes working with new or
excentric XML documents easier. This is eventually
marked out that a parser must be selected to
match all specific prerequisites for the execution of
time-reserve funds, correct parsing, and power
needs. In this investigation, XML document will be
checked the assorted operating systems such as
WIN7, WIN8, UBUNTU, Red Hat, and so on. with
three DOM APIs, such as PHP, JAVA and
Microsoft. The main purpose of this inquiry is to
check whether all the operating system affects the
parsing speed and, in the event of the perfect
combination of parser and operating framework,
this will be found at a certain stage. Due to
segment we depict regarding various XML
Parsers[2].

Swati Gupta1* Dr. Ashish Chourasia2

w
w

w
.i
g

n
it

e
d

.i
n

2102

 The Imperative Study on XML Parsing and Parsing Techniques

1.2 XML INDEXED STRUCTURE

Files pre-create on XML information can encourage
XML inquiries processing by finding data rapidly.
Index is built on traversing paths with the element set
or on the value of elements and attributes. Broadly,
XML indexes are classified into two types: ŘValue
Indexesř and ŘStructural Indexesř. Value indexes are
built on XML data values i.e. from value node. The
structural indexes are built on structure of XML
documents. The ŘValue Indexesř answer content
based query effectively while ŘStructural Indexesř
answer all types queries i.e. Contentment
relationship, Order query etc. The XML indexes are
discussed below:-

1) Structural Summary: - A structural
summary is smaller version of an XML tree
where all paths from root node to any leaf
node in the actual XML tree are preserved.
The main purpose of a structural summary is
to eliminate redundant structural information
without losing structural constraints; that is
the structural relationship between XML
element such as P-C & A-D relationships.
The drawback of these proposals is it has
very high index size. It grows exponentially
with XML file, sometime it is equal to the
XML file itself. These proposals can solve
total matching queries effectively but cannot
solve partial matching and twig queries.

2) Selectivity Indexes: -These index
techniques are implemented from the
RDBMS literature. In RDBMS literature, the
indexes are created on certain fields which
are selected by Database Administrator
(DBA). The field of indexing is selected on
different criteria like on frequently triggered
XML queries, the fields which satisfy certain
SQL queries.

3) Structural Join Indexes: - The basic
framework of any structural index is to
encode some structural relationships
between XML nodes (elements attribute etc)
so that query processor is able to predict
results by simply approaching a
corresponding index without accessing the
actual data file.

A. Node Index approach: - The major
purpose of the node-labeling
approach is: a) assigning a unique
code for all node in the XML tree. b)
Preserving the nested hierarchical
relationship (structural) during XML
updates, c) minimizing the re-
labelling cost (including the
processing time and I/O
accessibility) in the case of data
updates, and d) reducing the storage
space for store generated code.

B. Path Encoding Approach: - This
type of index has idea of creating a
path summary of XML data to speed
up the processes of query
evaluation. This index stores all path
information starting from root node
to any arbitrary XML node and
indexes are created on these paths.

C. Sequence based Approach:-
Sequence based indexes convert
both the XML query and XML
documents into sequences and use
the well-established sequences
matching techniques to obtain query
answer. In this approach, XML
documents and branching queries
are represented as sequence, and
subsequent matching provides the
query answers.

1.3 DIFFERENT PARSER AND PARSING
TECHNIQUE

Parsing levels are variable. Through Lexical
Review to Precise Parsing. Fuzzy Sorting, Island
Grammars, Skeleton Grammars & Error Repair are
among those two barriers.

Fig 1.1: parsing process

a. Fuzzy Parsing

To endorse multiple programming languages or
different dialects of the same programming
language, often reengineering systems use a

Swati Gupta1* Dr. Ashish Chourasia2

w
w

w
.i
g

n
it

e
d

.i
n

2103

 Journal of Advances and Scholarly Researches in Allied Education
Vol. 16, Issue No. 6, May-2019, ISSN 2230-7540

method of fuzzy parsing. The purpose of a Fuzzy
Parser is to obtain a partial source code model
based on a syntactical. Fuzzy parsing's key idea is
that some anchor terminals exist. The parser skips
all feedback until an anchor terminal is identified and
then attempts context-free analysis with an output
beginning with the anchor terminal found

b. Island Grammars

We get accommodating parsers with grammar on the
island. It is a grammar consisting of detailed
productions defining some interesting constructs
(islands) and liberal productions capturing the rest
(water). We can trade off precision, completeness
and speed of creation by varying the quantity and
information in outputs for value constructs. In
addition to the one we just described[MOON 01],
there are some different versions of island grammars
known. Leon Moonen is thinking about the following:

• Lake grammar: We get a lake grammar
when we begin with a complete grammar of
a language and expand it with a number of
liberal (water) outputs. These grammar is
useful in enabling arbitrary embedded code
in the software that we want to process.

• Islands with lakes: This is a combination of
island and sea productions. We may
designate nested buildings as lake-shaped
islands.

• Island lakes: this is another mix of island and
water production.

1.4 MARKUP LANGUAGES USED IN
PARSING

A. Standard Generalized Markup Language
(SGML)

It interacts with the online documentation technical
markings. The standard SGML paper consists of a
declaration of DTD or Paper Form, one of the
components of the top level (or else defined as
marks or markups), paragraphs and text. Based on
the type of document you are writing, the top-level
element should & we are going to use it for our
records. This is an example of a good document in
SGML.

Remember on the paper how we reported on the
authorization that used. This is essential; you would
get all kinds of errors if you run the file through the
SGML parser, if you forget that. Once you build it,
that information will not be viewable. The reason it's
not visible is that the parser thinks it's just a
comment (and it's!) so it just drops out of the final
document that has been parsed.

B. Hyper Text Markup Language (HTML)

HTML is not a language for programming but rather
a language for marking up. If you recognize XML
already, HTML is a snap to remember. We advise
you not to seek and blast in one sitting through this
tutorial. Alternatively, we suggest that you learn
HTML for 15 minutes to an hour a day and then
take a break and let the details sink in. We really
don't go anywhere! For several years, HTML hasn't
been available.

C. Extensible Markup Language (XML)

XML is a markup language which distinguished
several rules for encoding documents in a smart
and machine-discernible structure. XML's program
objectives emphasize effortlessness, all-inclusive
comment and various human languages, which is
fictitious knowledge system by solid maintain via
Unicode.

Despite the fact that the XML design revolves
around documents, it is typically used to represent
self-assertive information systems, for example in
web administration Several APIs have been
created to assist software developers process XML
content, and there are a few blueprint constructs to
assist with XML-based language sense. XML
assertion XML documents get started by proclaim
such data regarding themselves, as follows
example: XML is utilized for data organization. The
Structured Data includes items like spreadsheets,
address books, parameters of design, exchanges
related to money, and detailed drawings. XML is a
lot of rules for planning content organizations (you
can also call them rules or shows) that allow you to
organize your data.

1.5 XML PARSERS

Oracle includes Java, C, C++, & PL / SQL XML
parsers. This chapter mainly addresses Java's
parser. All of these parsers is a standalone XML
feature that parses an XML document (& probably
a standalone content type specification (DTD) or
XML schema) that could interpret by your code.
The examples set out in this section are in Java

Swati Gupta1* Dr. Ashish Chourasia2

w
w

w
.i
g

n
it

e
d

.i
n

2104

 The Imperative Study on XML Parsing and Parsing Techniques

Fig 1.2 XML Parser for Java

1.6 DOCUMENT OBJECT MODEL [DOM]

The DOM is a cross-platform & language-
independent display in HTML, XHTML and XML
documents to communicate to and interact with
objects. By using strategies on the products, articles
in the DOM tree may be tendered and managed. In
its application programming interface (API), the
transparent interface of a DOM is defined. Historical
experience of the Document DOM is interwoven with
the historical background of the late 1990's "tech
wars" between Netscape Navigator & Microsoft
Internet Explorer, and that of JavaScript & JScript,
the very first scripting languages to be extensively
updated in internet browser programming engines.

Fig 1.3 DOM Model

1.7 XML AND THE JAVA™

XML & Java Framework are paradise-build
businesses. XML defines a cross-platform
architecture of knowledge, and Java provides a
traditional cross-platform programming interface. At
the same period, XML and Java code assign
programmers for one-time registration, operate
everywhere TM main for data collection, and
generate documentation for both Java-based & non-
Java-based systems.

1.8 PARSING

Parsing may often be viewed as a descriptive
concept, for example when explaining how words are

broken up into sentences on the garden road.
Parsing, syntax analysis, or syntactic analysis is the
method of interpreting a set of symbols that conforms
to the principles of formal grammar, as in human
language, programming languages or data
structures. Parsing in this context relates to how
humans view a sentence or expression rather than
machines (in spoken language or text) "in form of
syntax representatives, recognizing sections of
words, syntactic associations, etc." It is especially
important when addressing what linguistic signals
help speakers decode sentences on the garden
road. Parsers range from very simple functions like
scanf, to complex programs like a C++ compilers
frontend, or a web browser's HTML parser. Regular
expressions are already being used in certain ways
prior to parsing, as the lexing phase whose
performance is then utilized by the parser. In
programming, a parser is one of the components in
an interpreter or compiler that tests for appropriate
syntax & constructs a data structure (also some
sort of parse tree, abstract syntax tree or some
hierarchical structure) implied in the input tokens.

Fig 1.4:- parsing model

1.8 SIMPLE API FOR XML PARSING
(SAX)

The SAX is an open domain API which is
considerably urbanized by the mailing catalog
partner XML-DEV. It gave the procedure of parsing
an XML document an event-driven interface. An
event driven interface presents a method for a
"callback" warning to the application's cipher as the
basic parser distinguishes the document's XML
syntactic structure.

David Megginson, Head of Megginson
Technologies, led the development of the XML
(SAX) Simple API, a widely used specification that
depicted how XML parsers can efficiently pass
information from XML documents to application
software. SAX was first introduced in Java and so
now nearly all big programming languages support
it.

The SAX API utilizes a "push parsing" approach
where the XML document is interpreted by a SAX

Swati Gupta1* Dr. Ashish Chourasia2

w
w

w
.i
g

n
it

e
d

.i
n

2105

 Journal of Advances and Scholarly Researches in Allied Education
Vol. 16, Issue No. 6, May-2019, ISSN 2230-7540

parser & invokes methods on a delegate (a Content
Handler) to handle which ever event is found in the
XML document. Frequently, one never writes a
parser, but one does provide a handler to collect all
the information needed from the XML document.

The SAX interface conquers the drawbacks of the
DOM interface by keeping only the lowest possible
data necessary at the level of the parser (example;
namespaces contexts, validation state), so only
information that is kept in memory by the Content
Handler-for which you, the developer, are
responsible. The tradeoff is that with an strategy,
there is no way to "go back in time / the XML
document": whereas DOM allows a node to go back
to its parent, because there's no such possibility in
SAX.

The StAX API adopts a similar approach to XML
processing as the SAX API (i.e., event driven), the
only very significant difference being that StAX is a
pull parser (where SAX was a push parser). For SAX
the parser is in charge, and the Content Handler
uses callbacks. In Stax, you call the parser and
check when / if you want to get the next "event" XML.
Figure shows the basic outline of the SAX parsing
APIs. To start the process, a SAX Parser Factory
class instance is utilized to generate a parser
instance. A SAX Reader object is wrapped in by the
parser. When invoking the parser's parse)
(technique, the reader invokes several of the
callback methods that are implemented within the
application. Those techniques are described by the
Content Handler, Error Handler, DTD Handler, &
Entity Resolver interfaces.

Fig 1.5 SAX APIs

1.9 PULL PARSING

Pull parsing observes the record as development of
object read in grouping exploit the iterated pattern
proposes. Its regard as make of recursive plummet
parsers in that the configuration of the cipher live out
the parsing reflect the construction of the XML being
parsed, and center of the highway parsed outcomes
get utilize and found nearby aspect within the

capacities playing out the parsing, or went down (as
capacity parameters) into lower-level capacities, or
returned (as capacity return esteems) to more
significant level functions.[21] Instances of pull
parsers include Data::Edit::Xml in Perl, StAX in Java,
XML Pull Parser in Smalltalk, XML Reader in PHP,
Element Tree. iterparse in Python, System. Xml. Xml
Reader in the. NET Framework, and DOM traversal
API (NodeIterator & Tree Walker).

In an XML text, a pull parser allows an iterator that
visits the different elements, features, & details
successively. Code that utilizes this iterator will test
the present thing (for example, to tell whether it's a
starting tag or end tag, or message) & evaluate its
attributes (nearby name, namespace, XML
property estimates, content estimates, & so on),
and can also move the iterator to the following. The
code would thus be able to eliminate information
from the report such as navigates. The recursive
plunge advance will in general fit keeping data as
composed neighborhood feature in the cryptogram
doing the parsing, whereas SAX, for instance,
commonly involve a parser to actually remain
middle of the road data within a mound of section
that are parent element of the factor being parsed.
Pull-parsing cryptogram gets further straight to
realize and continue than SAX parsing cipher.

CONCLUSION

In this paper analysis of different XML parsers is
useful in assessing the consistency and
weaknesses of the objects. Different tests were
conducted that contrast with gauges, speed,
memory use, etc. DOM is a bad memory because it
needs to keep the entire record tree in memory,
rendering it unable to manage extremely large
records. Objects in the DOM tree can be tackled &
exploited using entity methods. DOM API has
taken less time as compared to DOM4J and JDOM
for files of size 5KB. But as the size of the XML file
increases, every tree based API (DOM, DOM4J
and JDOM) takes more or less the same amount of
time. To conclude, we can say that streaming type
APIs (SAX and StAX) have worked faster that tree
type APIs, in both reading & script scenarios. The
query language for XML, XPath, is easy to code
but is the slowest of all the APIs considered.

REFERENCES

[1]. Extensible Markup Language,
http://www.w3.org/TR/REC-xml.

[2]. OASIS, http://www.oasis-open.org.

[3]. Juancarlo Anez (1999). "Java XML
Parsers-A Comparative Evaluation of 7
Free Tools," Java Report Online.

Swati Gupta1* Dr. Ashish Chourasia2

w
w

w
.i
g

n
it

e
d

.i
n

2106

 The Imperative Study on XML Parsing and Parsing Techniques

[4]. Yi Chen, Susan B. Davidson, Yifeng Zheng
(2010). ŖA bi-labeling based XPath
processing systemŗ Information Systems 35,
2010, doi: 10.1016/j.is.2009.05. ACM

[5]. W3C Website. Extensible Markup Language
(XML) 1.0 (Fourth Edition).
Online:http://www.w3.org/TR/REC-xml/,
Accessed on: 30/10/2006

[6]. Barbara Catania and Anna Maddalena,
Athena Vakali (2005). "XML Document
Indexes: A Classification " SEPTEMBER
OCTOBER 2005 Published by the IEEE
Computer Society 1089-7801/05/$20.00 ©
2005 IEEE IEEE INTERNET COMPUTING

[7]. Mikael Fernandus Simalango (2008). "XML
Query Processing and Query Languages: A
Survey" Property of Amikelive.com Ŕ
Technical Paper Series 25/10/2008

[8]. Byron Choi, Mary Fernandez, Jerome
SimeonThe XQuery Formal Semantics: A
Foundation for Implementation and
Optimization May 31, 2002

[9]. W3C Consortium, http://www.w3.org, 2006

[10]. W3C Consortium, XML Path Language
(XPath) 2.0, http://www.w3.org/TR/xpath20/,
2006.

[11]. W3C Consortium, XQuery 1.0: An XML
Query Language,
http://www.w3.org/TR/xquery/, 2006

[12]. D.D. Chamberlin (2002). ŖXQuery: An XML
Query Language,ŗ IBM Systems J., Vol. 41,
No. 4.

[13]. H. Jagadish, S. Al-Khalifa, A. Chapman, L.
Lakshmanan, A. Nierman, S. Paparizos, J.
Patel, D. Srivastava, N. Wiwatwattana, Y.
Wu, and C. Yu. (2002). TIMBER: A Native
XML Database. The VLDB Journal- Volume
11, pages 274-291.

[14]. Byron Choi, Mary Fernandez, Jerome
Simeon (2002). The XQuery Formal
Semantics: A Foundation for Implementation
and Optimization.

[15]. Z. Chen, H.V. Jagadish, L.V.S. Lakshmanan,
and S. Paparizos (2003). ŖFrom Tree
Patterns to Generalized Tree Patterns: On
Efficient Evaluation of XQuery,ŗ Proc. 29th
Intřl Conf. Very Large Data Bases (VLDB
ř03).

[16]. S. Paparizos, Y. Wu, L.V.S. Lakshmanan,
and H.V. Jagadish (2004). ŖTree Logical
Classes for Efficient Evaluation of XQuery,ŗ

Proc. 23rd ACM SIGMOD Intřl Conf.
Management of Data (SIGMOD ř04).

[17]. Mohammed Al-Badawi, Dr. Siobhán North,
Dr. Barry Eaglestone (2007). Research
memorandum Indexing XML Databases:
Classifications, Problems Identification and a
New Approach, 15

th
 November, 2007 in The

University of Sheffield Department of
Computer Science.

[18]. J.-K. Min, C.-H. Lee, and C.-W. Chung
(2008). ŖXTRON: An XML data management
system using relational database,ŗ
Information and Software Technology, vol.
50, pp. 462-479.

[19]. Jong P. Yoon, Vijay Raghavan, Venu
Chakilam, Larry Kerschberg BitCube (2001).
A Three-Dimensional Bitmap Indexing for
XML Documents Jong Yoon, et. al.,
BitCube, Journal of Intelligent Information
Systems, Vol. 17.

[20]. S. Al-Khalifa, H.V. Jagadish, N. Koudas,
J.M. Patel, D. Srivastava, and Y. Wu
(2002). ŖStructural Joins: A Primitive for
Efficient XML Query Pattern Matching,ŗ
Proc. 18th IEEE Intřl Conf. Data Eng.
(ICDE ř02).

[21]. N. Bruno, N. Koudas, and D. Srivastava
(2002). ŖHolistic Twig Joins: Optimal XML
Pattern Matching,ŗ Proc. 21st ACM
SIGMOD Intřl Conf. Management of Data
(SIGMOD ř02), 2002 Conf. Management of
Data (SIGMOD ř02).

Corresponding Author

Swati Gupta*

Research Scholar, University of Technology,
Jaipur, Rajasthan

