
 

 

 

M. V. Kirankumar1* Dr. Anand Gupta2 

w
w

w
.i
g

n
it

e
d

.i
n

 

617 

 

 Journal of Advances and Scholarly Researches in Allied Education 
Vol. 16, Issue No. 9, June-2019, ISSN 2230-7540 

 

A Review on Task Partitioning Strategies 
Classification in Distributed Parallel Computing 

 

M. V. Kirankumar1* Dr. Anand Gupta2 

1
 Research Scholar, Swami Vivekanand University, Sagar, MP 

2
 Associate Professor Department of Computer Science, Swami Vivekanand University, Sagar, MP 

Abstract – Parallel processing helps to show how many sections of the equation can be done 
concurrently in a heterogeneous computing system. The best of the existing frameworks could reach an 
elevated level of parallelism. This facilitates parallel execution of processes and scheduled coordination 
and alignment of buried processes just as successively. Numerous scientific questions (Statistical 
Mechanics, Computational Fluid Dynamics, Human Body and Bone Modelling, Genetic Evolution, Global 
Weather and Environmental Modelling, etc.) are so perplexing that it takes an unprecedented 
understanding of them through entertainment, impressive PCs. The use of elite parallel computing 
systems will illuminate enormous testing of logical problems. Task allocation in concurrent programs is 
particularly fundamental to the performance expectations of expressed computational systems. 

Keywords: Task Partitioning, Strategies, Classification, Distributed Parallel Computing 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

INTRODUCTION 

It is a difficult problem to appropriate tasks between 
various computer nodes in distributed high 
performance computing systems. Without 
considering the existing work partitioning and load 
adapting procedures, choosing the fitting strategy for 
the required system is difficult. Procedural adequacy 
depends on the quantity of variables in high-
performance computing systems like efficiency, 
interconnection topology, connectivity mode, system 
configuration, and throughput and processing 
capacities. Several methods have been introduced 
for partitioning and load correction, each leading to 
better results in different conditions. The main 
objective of this segment is to eliminate the 
complexity of tactics and plans when every strategy 
is needed. Each section includes a standard method 
of phrasing and ordering. Scheduling is a method 
used to do the various processors occupations[6]. It 
is a two-pronged procedure, allocation of processors, 
and task. Work is a program of self-governance 
which executes in its region. The scheduler 
completes asset allocation in two phases by more 
than two dimensions, time and space, and 
employment. Work includes strings to lessen 
overhead in operating economy. This increased the 
load of concurrent computing systems on the off 
possibility that a program package is being used to 
perform parallel employments rather than strings. 
Strings and their interaction may be static or 
dynamic[10 ]. The number of strings and the design 

of communication between strings may change 
dynamically, for example in the MIMD 
architecture[1 ] in parallel computing systems. If 
several executing elements are a component of a 
common program, then we view elements as 
strings and applications as occupations at that 
point[30]. A parallel operation is the set of activities 
with a prior relation. A task can be distinguished as 
an executable component which is to be executed 
successively without halfway parallel execution[2]. 
Any single parallel task cannot be parallel filly. In a 
parallel and centralized method to achieve high 
efficiency, viable task partitioning and load 
adjustment of huge task are required. Expanding 
the demand for high-performance computing 
systems through various science fields reveals 
unmistakable obsession with parallel computing. 
Determination of suitable methodologies for a 
particular system is a key element in the successful 
implementation of the tasks. In a homogenous 
architecture, the sequential computation method 
runs at any identical processor speed. Work on 
heterogeneous parallel PCs by carrying out 
fundamental tasks on faster processors reduces 
successive bottlenecks considerably. 
Heterogeneity effectiveness test presented by[ 4, 
5]. Processor allocation handles the guarantee of 
the number of processors allocated to an activity in 
a proficient manner [7]. Pugh and Nirkhe 
developed a multifaceted nature-examination 
method for mission partitioning[8]. The running time 
of a general constant program using high-level 



 

 

M. V. Kirankumar1* Dr. Anand Gupta2 

w
w

w
.i
g

n
it

e
d

.i
n

 

618 

 

 A Review on Task Partitioning Strategies Classification in Distributed Parallel Computing 

constructs is specifically evaluated. The relational 
model of Towsley and Nelson[9] has proposed to 
assign functions on specific processors. The roles of 
all multiple computational systems are not 
completely separated. 

TASK PARTITIONING ANB SCHEDULING IN 
DISTRIBUTED SYSTEMS 

A parallel machine solution to the problem needs the 
full use of the computer's computing resources. 
Every computing part not caught up with conducting 
useful calculations is corrupting by and great 
performance of the machine. Task scheduling 
techniques could be used to limit such potential 
performance constraints. Perhaps the greatest issue 
in parallel and distributed working environments is 
the development of viable techniques for the 
appropriation of the procedures of a parallel program 
on multiple processors. The issue is to plan the 
procedures among processing components to 
accomplish some performance goal(s, for example, 
limiting communication deferrals and execution time 
or potentially amplifying asset usage. Nearby 
scheduling performed by the OS of a processor 
comprises of the task of the procedures to the time-
cuts of the processor. Worldwide scheduling is the 
way toward choosing where to execute a procedure 
in a multiprocessor system. A solitary authority may 
complete it or it might be distributed among 
processing components. The effective execution of 
parallel programs relies upon the partitioning of the 
program into modules and calendars these modules 
for execution on a lot of processors. Pinnacle 
performances are counterbalanced by overheads, for 
example,  

• Communication overhead.  

• Synchronization overhead,  

• Loss of productivity when PE's are out of 
employments.  

• Operating system task the board overhead.  

Productive parallel processing comprises of finding 
an exchange off among the accompanying:  

• The number of processors to utilize.  

• Number of modules to execute.  

• Amount of overhead.  

The above exchange off is accomplished utilizing 
Task Granularity, which is characterized as the 
proportion between task calculation time(R) and task 
communication overhead(C). Fine grain tasks relate 
to little (R/C) and coarse-grain tasks for high (R/C), 
since  

There is an immediate relationship between's 
program effectiveness and granularity, the technique 
for advancement is to cluster a lot of fine-grain tasks 
into coarser-grain segments. 

TASK PARTITIONING 

Problem decomposition 

An concern could be resolved on a parallel system 
either by abusing the inborn parallelism in the 
algorithm, known as algorithmic deterioration, or by 
using the parallel implementation of the algorithm to 
different parts of the problem area, known as space 
deterioration. Such two forms of decay can be 
ordered in turn, as shown in Fig. 

 

Fig: Methods for breaking down a problem, 
leveraging parallelism 

Over the years a number of algorithms have been 
created to deal with a range of computer problems. 
Much time and effort is put into developing these 
successive algorithms. In this way, customers are 
abhorred to try to develop novel parallel algorithms, 
yet the value multiprocessor machines bring to the 
table is still of concern. The development of 
compilers, such as those for high-performance 
Fortran that naturally replicate such current 
algorithms, has been stimulated by algorithms in 
resolving this issue. Such compilers not only need 
to recognize the algorithm's parallelism but also 
have to decide on an effective strategy to move the 
valued portions of code into the network of 
multiprocessors in order to bring about productive 
cooperation. This has end up being a very hard 
objective to achieve. The area decay approach, 
then again, requires practically no adjustment to 
the current successive algorithm. There is in this 
way no requirement for refined compiler innovation 
to investigate the algorithm. Notwithstanding, A 
parallel framework as device software will be 
required to help divide the problem space between 
the parallel processors. 

Decomposition algorithm 

In disintegration of the algorithm the algorithm itself 
is broken down to distinguish which of its highlights 
is fit for parallel execution. At the level of activity 
the highest granularity of parallelism is feasible. 
Known as data stream, the data "streams" between 
singular operands executed in parallel at this level 
of parallelism[!].A small amount of space is 
required per processor for this form of decay. [2 ], 



 

 

 

M. V. Kirankumar1* Dr. Anand Gupta2 

w
w

w
.i
g

n
it

e
d

.i
n

 

619 

 

 Journal of Advances and Scholarly Researches in Allied Education 
Vol. 16, Issue No. 9, June-2019, ISSN 2230-7540 

 
be that as it may, the communication overheads 
might be enormous because of the extremely poor 
calculation to communication proportion. Fork and 
join parallelism, then again, dispenses parts of the 
algorithm to isolate processors as the calculation 
continues. Such fragments are a few proclamations 
or full processes daily. For a simple case in Fig the 
distinction between the two algorithmic forms of 
disintegration appears 

 

Fig. : Algorithmic decomposition; (a) fork & 
touch dataflow (b) 

Architecture of the system 

In this area, This dialog focuses on the updating, on 
distributed memory systems, of appropriate 
rendering techniques (i.e. parallel computer or 
distributed workstation system). In some way these 
processors could be joined together to frame a 
specification. A protocol is a code component that 
operates concurrently with different processes on a 
single processor. Every processor will need a few 
procedures to upgrade the ideal program and 
maintain the fundamental system software. Together 
with these applications and device types, a 
processing part contains a solitary processor and 
thus is the framework square of the multiprocessor 
system. (We will sometimes use condensing PE in 
the figures and code parts for processing 
components.) When thinking about processing 
component designs, we will use the word connects to 
mean the ways of communication between types. 

System Controller Structure 

A multiprocessor system must approach input / yield 
offices to provide a helpful parallel processing level. 
Some systems achieve this by assigning in any case 

as system controller (SC) one processing part with 
the tasks of providing this input / yield interface, as 
shown in Fig. On the off risk that the input / yield 
office constraint transforms into a true bottleneck 
then more than one system controller may be 
required. Certain computing elements carry out the 
problem linked actual estimate. Despite providing the 
input / yield facilities, the system controller may also 
be used to capture and combine data from the 
application components. In this case, the device 
controller has the right to decide when the 
measurement is complete and the simultaneous 
procedures at each processing part are swiftly 
terminated. 

 

Figure: Machine Controller in a parallel system. 

COMPUTATIONAL MODELS FOR TASK 
DISTRIBUTION 

The theoretical model chosen to deal with a 
particular issue defines how research is performed 
across multiprocessor system processors. As we 
continued to look for productive parallel execution, 
the extent of time the processors spend performing 
vital calculations should be amplified. Some pain 
may lead to inert processors, while others struggle 
to complete the work they do, thereby reducing 
future efficiency. Load-adjustment strategies plan 
to ensure a consistent operational division for all 
processors. Every processing component that 
applies the pre-defined algorithm for many head 
data materials includes the configuration of an 
issue using the decaying region model. The 
numerical model guarantees that every primary 
data item is monitored and determines how 
activities are allocated between processing 
components. For each problem a measurement 
model decision occurs. The model chosen must 
see that the full workload is spread equally among 
the processor components to achieve most 
extreme system performance. It balances the 
overheads involved in the transfer of head data 
materials to process parts so that inert time 
components are not managed. A rearranged model 



 

 

M. V. Kirankumar1* Dr. Anand Gupta2 

w
w

w
.i
g

n
it

e
d

.i
n

 

620 

 

 A Review on Task Partitioning Strategies Classification in Distributed Parallel Computing 

beam reflects the differences among the computer 
models. 

A continuation of the answer to the question could be 
obtained by dividing up the image plane into 24 
unmistakable zones, where each district produces a 
single header data item, as shown in the fig. 
Therefore, for this issue, 24 tasks are required, in 
which the pixel trust in one region of the image plane 
is determined. To grasp the computer models, it is 
not important to know the subtleties of the algorithm 
to make the task of stating that each critical data 
material reflects a photographic plane field in which 
the algorithm is used to evaluate the justification for 
this role. We presume no additional data are required 
for any task to be completed. 

 

Fig.: Main data elements used to measure the 
pixels in the image plane. 

System derived by data 

Until beginning computation, The computer-driven 
model distributes to certain computing resources the 
key data material. Thus the key data elements 
needed to apply the algorithm from the earlier are 
identified in each processing variable. Giving enough 
room for each processing part to be configured, at 
that point, aside from the underlying circulation, there 
is no further communication of head data things. In 
the event that there is lacking nearby memory, at that 
point the additional things must he brought when 
memory space permits. 

Driven out Striking results 

The code segment has an equivalent number of 
head data elements in updated machine-driven 
structures (otherwise known as geometric 
disintegrations). This bit is calculated only by the 
quantity of computing elements partitioning the 
absolute number of head data items: 

 

On the off chance that the quantity of head data 
things isn't a careful multiple of the quantity of 
processing components, at that point  

(Main data item number) MOD (number of PEs) 

Would each have a more principal data entity and 
thus carry out another mission. The controller 
transmits to each processing variable the appropriate 
start function and the number of tasks, and they 
could then apply the algorithm of their allocated head 
info. This is how SIMD computing varieties are 
addressed. Consider in this model the basic beam 
after count for a vacant scene. The primary data 
things (the pixels) might be allotted similarly to three 
processing components, named PEI, PE2 and PES, 
as appeared in Fig. For this situation, each 
processing component is distributed eight head data 
things. 

 

Fig.: Equal distribution of data pieces to the 
components handled. 

Since no more distribution of head data items 
exists after the underlying transmission, A decent 
workload is accomplished on a logical 
computational model powered by data when a 
simulated workload in relation to each segment of 
head data is indistinguishable. If not, certain code 
components are completed, while others, given all, 
have continued to do so. For the successful model 
of data driven, the allocation of head data items 
between processing components is statistical, 
which means that an equal amount of head data 
items can be assigned to each processing part, 
regardless of the problem area situation. This 
formula is likely to be used to establish a 
reasonable functioning charge if the numerical 
exercise in one of the most important data items is 
the same and ideally, where the number of head 
data items is an appropriate multiple of the section 
amount of the processing. Nevertheless, the 
honorable data-driven methodology of the 
computer models is least difficult to implement.  

TASK SCHEDULING STRATEGIES 

Task management approaches based on data 

The machine planner calculates the division of 
tasks in a data-driven process that precedes 



 

 

 

M. V. Kirankumar1* Dr. Anand Gupta2 

w
w

w
.i
g

n
it

e
d

.i
n

 

621 

 

 Journal of Advances and Scholarly Researches in Allied Education 
Vol. 16, Issue No. 9, June-2019, ISSN 2230-7540 

 
continued estimation. This can involve an underlying 
arrangement stage with the lopsided strategy, Based 
on the established unpredictability of computing, as 
shown in field. A standard work packet outlining the 
activities to be completed is sent to each delivery 
section. As each task is executed in this code 
fragment, the applications method may recover the 
incessant supply of their assigned segment and 
return specific results: 

 

M A computer model powered by the data can be 
supplied at the beginning of a processing element 
using the same amount of head data objects that its 
neighborhood memory requires. Should capacity 
limitations be absent, the Board Strategy could be 
useful if the missing head data items are tobe pre-
established as computation proceeds and deposited 
nearby. 

Task management approaches driven by demand 

Inside the interest driven computational model, the 
role of the executives is express. The method of the 
task contractor, which designs any portion of the 
device manager, is responsible for location and 
delivery of these products to processing components 
for activities in packets. The controller maintains a 
list of mostly used project parcels in order to facilitate 
this operation. Upon receipt of an order, the worker 
primarily dispatches from this task pool the following 
open task packet, as can be seen in Figure.  

The benefit of a task pool is that the parcels can be 
embedded into it ahead of time, or simultaneously as 
the arrangement continues, As demonstrated in the 
accepted allocation approach. This is particularly 
useful for problems, such as those using the hybrid 
approach as depicted in the field, that make work 
dynamically. The benefit of the task pool is that if a 
difficulty issue is discovered in the problem area, the 
order can be immediately modified within the working 
pool to represent this and therefore guarantee that 
highly difficult code activities are assigned first. 

 

Fig: Supplying Application Manager task 
modules from a work database 

CLASSIFATIONS OF SHEDULING 
STRATEGIES 

The general scheduling problem has been 
identified many times and in a number of different 
courses in the literature[6],[7],[8 ] and usually 
represents the traditional ideas of work 
sequencing[9 ] in the board's generation inquiry. 
[10]. For the reasons for distributed procedure 
scheduling, we take a more extensive perspective 
on the scheduling function as an asset the board 
asset. This administration asset is fundamentally a 
system or approaches used to proficiently and 
viably deal with the access to and utilization of an 
asset by its different consumers. Consequently, we 
may see each case of the scheduling issue as 
comprising of three fundamental segments:  

a) Consumer(s).  

b) Resource(s).  

c) Policy,  

Like other administration or control issues, 
watching the impact it has on its environment may 
best do understanding the functioning of a 
scheduler. For this situation, One can track the 
scheduler's actions as to how the system impacts 
the services and customers. Note that despite the 
fact that there is only one method, the scheduler 
can be seen as affecting either or both resources 
and consumers. The relation between scheduler, 
strategies, customers and resources is shown in 
Fig. 



 

 

M. V. Kirankumar1* Dr. Anand Gupta2 

w
w

w
.i
g

n
it

e
d

.i
n

 

622 

 

 A Review on Task Partitioning Strategies Classification in Distributed Parallel Computing 

 

Fig. System of Scheduling 

In view of this depiction of the scheduling issue, 
there are two assets that must be taken into account 
when evaluating any scheduling system:  

Product fulfillment with how well the scheduler 
manages the source (performance) referred to, and 

Customer fulfilment as to how inconvenient or costly 
it is to use the administration tool itself (productivity). 
As it were, the consumers need to have the option to 
rapidly and effectively access the real asset being 
referred to, yet don't want to be ruined by overhead 
issues related with utilizing the administration work 
itself.  

One consequence of this general scheduling 
problem declaration is the convergence of two words 
used in the literature in the same way. The terms 
scheduling and allocation frequently have a certain 
qualification. Nevertheless it can be argued very well 
that these are merely elective specifics of a similar 
issue, With the distribution seen from customer 
perspective as regards asset allocation (from the 
capital point of view) and preparation. The allocation 
and scheduling therefore constitute just two terms, 
but are viewed from various perspectives, which 
reflect a general tool. 

CONCLUSION 

The Parallel Computing System Distributed Zone. 
The framework and design used for the distributed 
processing systems rely on the good performance of 
the program. Of example, the quick dialog between 
scheduling methodologies has no perfect strategy for 
all parallel computing systems. The most precise 
explanations of the existing systems are provided by 
the active closely review of methodologies. Complex, 
precautionary and non-preventive division and load 
correction procedures are easily addressed. 

REFERENCES 

Savvas K and Tahar Kechadi, M. (2004). ―Dynamic 
Task Scheduling in Computing Cluster 
Environments,‖ Proceedings of the 
ISPDC/Heterogeneous Parallel Computing, 
IEEE conference, pp. 121–154.  

S. Ali, H.J. Siegel, M. Maheswaran, D. Hensgen and 
S. Ali (2000). ―Task Execution Time 
Modeling for Heterogeneous Computing 
System. Proceedings of Heterogeneous 
Computing Workshop‖, pp. 184-199.  

Chen H. (2005). ―On the Design of Task Scheduling 
in the Heterogeneous Computing 
Environments‖. IEEE Pacific Rim 
Conference on Communications, Computers 
and Signal Processing. 

Ahmed M., S.M.H. Chowdhury, M. Hasan (2008). 
Fast preemptive task scheduling algorithm 
for homogeneous and heterogeneous 
distributed memory systems, in: Ninth ACIS 
International Conference on Software 
Engineering, Artificial Intelligence, 
Networking, and Parallel/Distributed 
Computing, pp. 721– 726. 

Radulescu A. and A. J. C. Van Gemund (1999). ―On 
the complexity of list scheduling algorithms 
for distributed memory systems‖. ACM Int’l 
Conf. on Supercomputing, Rhodes Greece. 

Andersson B., Jonsson J. (2002). ―Preemptive 
multiprocessor scheduling anomalies,‖ 
Proceedings of IPDPS, pages: 12-19, 2002 

Pandelis D. G. (2007). ―Optimal Preemptive 
Scheduling on Uniform Machines with 
Discounted Flow Time Objectives,‖ 
European Journal of Operational 
Research, Vol. 177, No. 1, pp. 630- 637. 

Gonzalez T. (1977). ―Optimal Mean Finish Time 
Preemptive Schedules, Technical Report 
220, Computer Science Department, 
Pennsylvania State University. 

Renan A. S., Romulo S. de O. (2012). "A 
Heterogeneous Preemptive and Non-
preemptive Scheduling Approach for Real-
Rime Systems on Multiprocessors, 2012 
Second Brazilian Conference on Critical 
Embedded Systems, pp. 70-75. 

Desrochers M., Lenstra J.K., and Savelsbergh 
M.W.P. (1990). ―A Classification Scheme 
for Vehicle Routing and Scheduling 
Problems‖, European Journal of 
Operational Research, pp. 320–331. 

Burns A. (1993). ―Preemptive Priority Based 
Scheduling: An Appropriate Engineering 
Approach‖. Technical Report YCS 214, 
University of York, pp.12-18. 

Jeffay, K.; Stanat, D.F.; Martel, C.U. (1991). ―On 
Non-Preemptive Scheduling of Period and 
Sporadic Tasks,‖ Real-Time Systems 
Symposium, Proceedings. Twelfth, Vol., 
No., pp.129-139. 

 

 



 

 

 

M. V. Kirankumar1* Dr. Anand Gupta2 

w
w

w
.i
g

n
it

e
d

.i
n

 

623 

 

 Journal of Advances and Scholarly Researches in Allied Education 
Vol. 16, Issue No. 9, June-2019, ISSN 2230-7540 

 
 

Corresponding Author 

M. V. Kirankumar* 

Research Scholar, Swami Vivekanand University, 
Sagar, MP 

 

 


