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Abstract – A persistent straight administrator T: E ⁇  F is viewed as absolutely particular if each limitless 

dimensional shut subspace of its area can't be invertible. In this notice, we address appropriate 
conditions and implications of the LB(E, F) = Ls(E, F) hypothesis, which implies that each continuous 
linear bounded operator described in E to F is strictly special. In the event that it maps an area of the 
source of E into a limited subset of F, a ceaseless direct administrator planning a neighborhood arched 
space (lcs) E into a lcs F is supposed to be limited If E or F is a uniform space, at that point any nonstop 
straight administrator is bound among E and F. A nonstop straight administrator T: E on the same page 
F is viewed as simply solitary on the off chance that it isn't invertible on some vast shut subspace of E. 
Kato[13] added simply particular administrators to the class of Banach spaces as per the bother rule of 
Fredholm administrators. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

INTRODUCTION 

A compact administrator is only explicit, despite the 
fact that all in all the opposite isn't substantial. Van 
Dulst first concentrated carefully remarkable 
operators on Ptak (or B-complete) spaces and 
summed up Hilbert spaces as far as lcs. For the 
class of Br-complete spaces, Wrobel recognized 
carefully particular operators on lcs's. In the event 
that the pair (X, Y) has a place with the class of 
Banach spaces, Ls(X, Y) is a proficient administrator. 
This isn't the situation, as observed in [5], since it 
has a place with the overall class of lcs. However, 
each class of purely special bounded operators LBs 
(E, F) and compact operators Lc(E, F) is an ideal 
operator in lcs. By [22], if F has the property (y), for 
Fréchet spaces E and F, LBs (E, F) = Ls(E, F); If, as 
a quotient, E includes l1, then LBs(E, F) Ls(E, F). 

Lemma 1. Let E and F be lcs’s where E is Br-
complete. Then, Ls(E, F ) forms an operator ideal. 

Proof. Suppose that T : E → F and S : E → F are 
strictly singular operators. Then, for any M ≤ E, by 
[28, Theorem 1-IV], find N ≤ M such that T |N is pre-
compact. Then find P ≤ N such that S|P is pre-
compact. The ideal property of pre-compact 
operators on lcs’s yields the result. 

We give the accompanying recommendation as a 
use of administrator ideal property of carefully 
particular operators on Br-complete lcs's. It is a 
speculation of [1, 2010 Mathematics Subject 

Classification. 46A03, 46A11, 46A32, 
46A45.Problem 4.5.2], and in particular, it is also 
true when re-stated for bounded strictly singular 
operators acting on general lcs’s. 

Proposition 1.  
be lcs’s where E is Br-complete. Then, T : E → F is 
strictly singular if f each of Tij : Ei → Fj is strictly 
singular for each i = 1, 2, . . . , n and for each j = 1, 
2, . . . , m. 

Proof. Assume that each Tji is strictly singular. Let 
πi : E → Ei be the canonical projection and define 

 0, for which yj is the j-th summand. Consider 

and write where Tji is the j-th 
summand. By Lemma 1 and 

rewriting  

T is strictly singular. For the converse, let T ∈ Ls(E, 
F ), and suppose that the operator Tji is not strictly 

singular for some i, j, and for M ≤ E, r ∈ I and s ∈ J, 

Nrs(T |M ) := sup{qs(Tx) : pr(x) ≤ 1, x ∈ M}. Then by 
[20, Theorem 2.1], for any M ≤ Ei and for some s ∈ 

J, Nrs(T |N ) > ε, for all r ∈ I. If we write M 

 

Where M places in the i-th summand, M^ is a 

vector subspace of X. Nrs(τMˆ) > ε, for all r ∈ I. Yet, 
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that negates the presumption T is carefully particular. 

Each compact operator has a simple boundary. If we 
substitute compactness with absolute uniqueness, 
the results reveal that a purely singular operator T: E 

⁇  F between lcs may not be unbounded, as such an 

inference contributes to an inconsistency with 
Bessaga, Pelczynski, and Rolewicz's well-known 
outcome. In Section 2 we survey the additional 
assumptions in which a bounded operator is 
immediately purely singular between two lcs. 

STRICT SINGULARITY OF BOUNDED 
OPERATORS 

In this segment, the extra speculations for a limited 
administrator's exacting peculiarity are included. Our 
beginning stage would be the Banach Spaces class. 
Utilizations of [7, Lemma 2] can bring about any of 
these discoveries getting significant for the lcs class. 
In a given case, it is important to accomplish a 
characterization (Theorem 3). For L(X, Y) = Ls(X, Y) 
in Banach spaces, the most generally perceived non-
insignificant case is when X = lp and Y = lq with the 

end goal that 1 = p < q < ⁇ .This concept was 

important in the isomorphic classification of 
Cartesian power series spaces and in the issue of 
whether the sum of two supplemented subspaces is 
also supplemented[15] (if E subspaces are 
supplemented by X and Y, X+Y is supplemented by 
E if LB(X, Y) = Ls(X, Y)). If a weakly convergent 
sequence in X converges in norm, a Banach space X 
is said to have the Schur property (SP). On the off 
chance that a compelled arrangement is feebly 
Cauchy, X is viewed as practically reflexive. X is 
viewed as pitifully successively complete (wsc) if any 
feebly joined Cauchy arrangement in X is powerless. 
X is said to have the Dieudonné property (DP) if 
operators on X are feebly compact while changing 
frail Cauchy successions into pitifully joined 
groupings. 

A couple of Banach spaces (X,Y) is considered 
completely unique if there is no Banach space Z 
isomorphic to a subspace of X and Y. A property P is 

viewed as innate on a Banach space X if any M ⁇  X 

cherishes it. X is expected to have P no place if the 
property P has no subspace. By Lw and Lv 
respectively we denote the groups of weakly 
compact and wholly continuous (or complete) 
operators. The Dunford-Pettis property (DPP) is said 

to have a Banach space X if Lw(X, Y) ⁇  Lv(X, Y), for 

each Banach space Y. X, if Lv(X, Y) ⁇  Lw(X, Y), is 

said to have the proportional Dunford-Pettis property 
(rDPP). 

Lemma 2. Leave X and Y single Banach spaces. 

1. Let X be practically reflexive.Then, for any 
wsc Banach space Y, L (X, Y) = Ls(X, Y). 

2. Let X have DP, and let Y be wsc. Then, L(X, 
Y) = Lw(X, Y). 

3. Let Y be almost reflexive. Then L(X, Y) = 
Lv(X,Y) implies L(X,Y) =Ls(X, Y). 

4. Let X be a Banach space with SP. Then, for 
every M ≤ X,  1    → M. 

Proof. 

1. Because X is practically reflexive, at that 
point (Txn) has a feebly Cauchy grouping in 
Y if (xn) is a limited arrangement in X. But Y 
is wsc, that is, any weak sequence of 
Cauchy weakly converges in Y. T is weakly 
compact, along these lines. 

2. Let (xn) x be Cauchy weakly, and let T be 
L(X, Y). Then (Txn) is Cauchy weakly in Y. 
Since Y is believed to be wsc, (Txn) weakly 
converges. X, though, has DP, so T x Lw(X, 
Y). 

3. See [16, 1.7], Theorem. 

4. Let X has the SP and concludes that M 
does not contain. Any bounded sequence 
(xn) in M then has a weak Cauchy 
subsequence because M is almost 
reflexive equivalently. M should, though, 
inherit SP. The poor Cauchy series of (xk) 
then converges into X. Therefore, M is 
dimensionally finite Disagreement. 

Theorem 1. Leave X and Y single Banach spaces. 
Every one of the accompanying suggests L(X, Y ) 
= Ls(X, Y ). 

1. X and Y are absolutely exceptional. 

2. X is nowhere reflexive, Y is reflexive. 

3. X is nowhere reflexive, Y is quasi-reflexive. 

4. X is practically reflexive and no place 
reflexive, Y is wsc (see Example 1). 

5. Y has hereditary P, X has nowhere P. 

6. Y is almost reflexive, X is hereditarily- 
1
. 

7. X has SP, Y is almost reflexive. 

8. X is reflexive, Y has SP. 

9. X has the hereditary DPP, Y is reflexive. 

10. L(X, Y ) = Lw(X, Y ) and X has DPP. 

11. L(X, Y ) = Lv(X, Y ) and X has rDPP. 

12. X  is a Grothendieck space with DPP, Y  is 
separable. 
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13.  X has both DP and DPP; Y is wsc (see 

Example 1). 

Proof.  

1.  Assume T : X → Y is a non-strictly singular 
operator.  So find M ≤ X on 

which . Since X and Y 
are totally incomparable, this is impossible. 

2. See Theorem This result is generalized in 
part 5. 

3. Suppose there exists a non-carefully 

particular administrator T ∈ L(X, Y ). At that 
point, T is an isomorphism when limited to M 
≤ X, so M is semi reflexive. In any case, by 
[12, Lemma 2] there exists a reflexive N ≤ M. 
This repudiates the presumption X is no 
place reflexive. 

4. By section 1 of Lemma 2, L(X, Y ) = Lw(X, 
Y). Presently let T : X → Y which has a 
limited backwards on M ≤ X. In the event that 
(xn) is a limited arrangement in M, at that 
point there exists (Txkn) a feebly joined 
aftereffect of (Txn) in Y . Henceforth (xkn) is 
feebly united in M, since T has a limited 
backwards on M. 

In this manner, each limited grouping in M has a 
feebly merged aftereffect in M. So M is reflexive 
Contradiction. 

5. For some M ≤ X assume there exists T: X → 

Y with the end goal that M ≃ T (M). Be that 
as it may, T (M) acquires P. Consequently M 
has P. This repudiates X has no place P. 
Presently let S: Y → X be with the end goal 
that for some N ≤ Y. Since X has no place P, 
S(N ) abhors P . Logical inconsistency. 

6. A specific instance of section 5. 

7. Any administrator T with extends Y maps 
limited groupings into feebly Cauchy 
arrangements, since Y is practically 
reflexive. Then again, any such T de-fined 
on X maps pitifully Cauchy groupings into 
standard focalized successions by the SP. 
That infers L(X, Y) = Lv(X, Y). Subsequently 
by section 3 of Lemma 2 the outcome 
follows. 

8. Let T ∈ L(X, Y) have a limited reverse on 
some M ≤ X, that is, (M). Since Y have SP, it 
likewise has the inherited DPP [6]. Thus 
does as well M. In any case, M is reflexive. 
By [14, Theorem 2.1], reflexive spaces have 
no place DPP. Logical inconsistency. 

9. Let M ≤ X on which a self-assertive 
administrator T: X → Y has a limited 
opposite. At that point, So, M is reflexive. 
Henceforth M can't have DPP. 
Inconsistency. 

10. Since X has DPP, L(X, Y) ∈ Lv(X, Y). At that 
point, by [16, Theorem 2.3], the outcome 
follows. 

11. Since X has the rDPP and L(X, Y) = Lv(X, 

Y), T ∈ Lv ∩ Lw. By [16, Theorem 2.3], we 
are finished. 

12. By [21, Theorem 4.9], any such 
administrator T: X → Y is pitifully compact. 
Since X has the DPP, T is totally 
ceaseless. By section 10, we arrive at the 
outcome. 

13. By section 2 of Lemma 2, L(X, Y) = Lw(X, 
Y). X has the DPP, so L(X, Y ) = Lv(X, Y ). 
By [16, Theorem 2.3], the evidence is 
finished. 

Example 1. Note that the non-reflexive space c0 is 
almost reflexive. Suppose there exists a reflexive 
subspace E of c0. Since c0 fails SP, it is not 
isomorphic to any subspace of E. But this 
contradicts [17 Proposition 2.a.2]. The space C(K), 
where K is a compact Hausdorff space enjoys both 
DP and DPP . 

Corollary 1. Let X, Y, W, Z be Banach spaces. 
Then, 

1. If X
′
, Y 

′
, Z

′
 have SP and W is almost 

reflexive, every operator defined on 

is strictly singular. 

2.  If X and Y are reflexive spaces one of 
which having the estimate property, L(X, Y 
′
) = L (X, Y 

′
), W and Z have SP, then every 

operator defined on 

is strictly 
singular. 

3.  If X is almost reflexive and Y is almost 
reflexive and has DPP, then every operator 

defined on X⊗^ π Y  into ℓ   is strictly 
singular. 

Proof.  

1.  By [16, Corollary 1.6], L(W, Z
′
) = L (W, Z

′
).  

So by [9, Theorem   3] we deduce W ⊗πZ 
is almost reflexive. On the other hand, by 
[23, Theorem 3.3(b)] we reach that L(X, Y 

′
) 

has SP. But in [24] it is proved that 
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SP. Therefore, Theorem 1 part 7 yields the 
result. 

2.  By [24, Theorem 4.21], is reflexive.  
By [18], SP respects injective tensor 

products. So has SP. Then, part 8 
of Theorem 1 finishes the proof. 

3.  By [6], Y 
′
 has SP. Then by [16, Corollary 

1.6], L(X, Y 
′
) = L (X, Y 

′
). Hence, [9, 

4.  Theorem 3] yields that  is almost 
reflexive. It is clear that every operator 
defined from an almost reflexive space into ℓ

1
 

is strictly singular. 

5.  Because X is almost reflexive, if (xn) in X is a 
small series, then (Txn) in Y has a poor 
Cauchy series. But Y is wsc, that is, any 
weak series of Cauchy converges in Y 
weakly. T is therefore weakly compact. 

6.  Let (xn) x be Cauchy weakly, and let T be 
L(X, Y). So (Txn) Cauchy is small in Y. 
Because Y is believed to be wsc, (Txn) is 
weakly converging. X, though, has DP, so T 

⁇  Lw(X, Y).AlsoTheorem. 

7.  Let X have the SP and reason that M/X 
doesn't contain. Any limited arrangement 
(xn) in M at that point has a pitifully cauchy 
aftereffect since M is practically reflexive 
comparably. M acquires SP, however. The 
poor Cauchy arrangement of (xk) at that 
point unites with X. M is subsequently limited 
dimensional. The irregularity. 

Let λ1(A) ∈ (d2), and λp(A) ∈ (d1) as in [8]. Then, by 
[30], L(λ1(A), λp(A)) = LB(λ1(A), λp(A)). For 1 ≤ p < ∞, 
we know that λp(A) = proj lim ℓ

p
(an). Since ℓ

p
(an), 1 < 

p < ∞ has no subspace isomorphic to ℓ
1
, L(ℓ

1
, ℓ

p
) = 

Ls(ℓ
1
, ℓ

p
). Then, by [7, Lemma 2], L(λ1(A), λp(A)) = 

Ls(λ1(A), λp(A)). Resting on the same argument, to 
obtain several sufficient conditions for L(E, F ) = 
Ls(E, F ) is possible for the class of general lcs’s. 

Theorem 2. Let E, F be lcs’s. Each of the following 
implies LB(E, F ) =Ls(E, F ). 

1.  E ∈ s(X) and F is locally Rosenthal. 

2.  E ∈ s(V) and F is a quasinormable Fréchet 
space. 

3.  E is infra-Schwartz and F ∈ s(V) 

4.  E ∈ s(P
¬
) and F ∈ s(P) 

Proof.  

1.  Since F is locally Rosenthal, there exists a 
group of Banach spaces {Fm} every one of 
which doesn't contain an isomorphic 
duplicate of  1 with the end goal that F = proj 
lim Fm. Because E ∈ s(X), there exists a 
family of Banach spaces {Ek} such that every 
Mk ≤ Ek contains a subspace isomorphic to 
ℓ
1
. By part 6 of Theorem 1, any linear 

operator Tmk : Ek → Fm is strictly singular. 
Making use of [7, Lemma 2], we reach the 
result. 

2.  By [19, Theorem 6], F is locally Rosenthal. 
Since E ∈ s(V), by part 4 of Lemma 2, E ∈ 
s(X). Then, by part 1, we are done. 

3.  Since E is infra-Schwartz, any of its local 
Banach spaces Ek is reflexive. 

The assumption on F completes the conditions in 
part 8 of Theorem 1. Combined with [7, Lemma 2], 
we are done. 

4.  Since E ∈ s(P
¬
), one may rewrite E = proj 

lim E , where each E has no subspace 
having property P . Similarly, F = proj limm 
Fm where each Fm is hereditarily P . Hence, 
by part 5 of Theorem 1, L(Ek, Fm) = Ls(Ek, 
Fm) for every k, m. Applying [7, Lemma 2], 
we obtain LB(E, F ) = Ls(E, F ). 

Theorem 3. 1. Let (E, F, G) be a triple of Fréchet 
spaces fulfilling the accompanying 

1.  Every subspace of E contains a subspace 
Isomorphic to G.F has no subspace 
isomorphic to G. 

2.  Then, LB(E, F ) = Ls(E, F ). Let F have 
continuous norm in addition. Then, is also 
necessary if F is a Fréchet-Montel space. 

Proof. The adequacy aspect is quite close to the 
proof of Part 4 of Theorem 2. Let E be a Fréchet 
space, for requirement, and let F be a (FM)-space 
admitting a continuous norm. Let each linear T 
operator be purely special. And it is bounded by 
[29, Proposition 1]. Let N Y, which is isomorphic to 
G, live now. And I: N is enclosed, compact, thus. 
All N is Dimensional Finite. Disagreement. 
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