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Abstract – In recent years, advances in machine learning have led to various innovations in to automating 
various iterative and time-consuming tasks. One such tasks that data scientists carries out is feature 
extraction. Feature Extraction is time consuming and requires domain knowledge and chances are few 
features can be missed. As a result, automating this process will provide ease for data scientists as all 
possible features can be generated. Automated Feature Engineering majorly focuses on reducing the 
time require to generate features which can be used to train the models. As a result, a framework is 
provided to reduce the time required for feature extraction by considering only candidate set of features 
as an input that also helps to generate only useful features. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

I. INTRODUCTION 

One of the elements for a successful machine 
learning technique is a properly organized data set. 
The information needs to be cleaned and organized 
for the algorithm to induce an excellent model. 
Preparing a data set efficiently, usually takes a big 
amount of time, and it calls for strong understanding 
about the domain. One specifically crucial task is 
feature engineering, which includes developing new 
variables that make it less difficult for the algorithm to 
reap a very good version. Recent years have visible 
development in automating model choice and 
hyperparameter tuning, however the most vital issue 
of the machine learning, feature engineering, has in 
large part been omitted. Automated feature 
engineering can bring significant assistance to 
individuals and organizations. This will help data 
scientists to focus more on the other steps of 
machine learning pipeline and iterate successfully. 

Feature is a measurable attribute of the object in an 
attempt to analyze datasets. Features are also 
termed as ―variables‖ or ―attributes‖.  For instance, 
customer datasets often comprise of customer id, 
income and date of joining and so on. Features are 
the basic building blocks of datasets. In any 
datasets, features appear as columns. The quality of 
features there in the dataset have first-rate effect on 
the quality of insights derived when used for machine 
learning. 

Feature engineering is the process of taking a 
dataset and building explanatory variables — 
features — that may be used to educate a machine 
learning model for a prediction hassle. Often, fact is 

spread across multiple tables and need to be 
gathered into a single table with rows comprising 
the observations and features in the columns. 
Feature engineering if carried out properly then it 
increases the predictive power of machine 
learning algorithms. 

Feature engineering is an art to create features 
from raw data which in turn creates the big 
difference between good model and bad model. It 
is the important parameter for any successful 
model. 

The data used to generate predictive model 
encompasses an outcome variable that holds data 
which requires prediction. It also holds series of 
predictor variable that holds data supposed to be 
predictive of the outcome variable. To illustrate 
consider an application to predict the property 
prices. The data which shows actual prices of 
property is termed as an outcome variable and the 
data such as size of houses, the location of 
house, the number of bedrooms in a house is 
considered as predictor variables and are believed 
to determine the property value. A "feature" in the 
framework of predictive modeling is simply 
another name for a predictor variable. 

II. OVERVIEW OF BACKGROUND 
AND PREVIOUS WORK 

Nowadays, it is becoming quite common to work 
with datasets which consists of hundreds (or even 
thousands) of features. However, in machine 
learning the dimensionality of a dataset is equal to 
number of variables that are used to represent it. 
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The aim of feature extraction is to reduce the number 
of features in the dataset by creating new features 
from the existing ones or by applying 
transformations. However, the original features are 
then discarded. The reduced new set of features 
consists summarized information about original 
version. The various manual feature extraction 
techniques are [2]: 

1. Principal Component Analysis (PCA): 
This technique is also termed as linear 
dimensionality reduction technique and is 
one of most commonly used techniques. In 
this technique, the original data is taken as 
input and trial is carried out to find a 
combination of the input features which can 
best summarize the original data distribution 
so that the original dimensions can be 
reduced. This is achieved by exploiting 
variances and minimalizing the 
reconstruction error by looking at pair wised 
distances. In this the original data is 
projected into a set of orthogonal axes and 
the axes gets ranked based on the order of 
importance. 

2. Independent Component Analysis (ICA): 
This technique is also as a linear 
dimensionality reduction method that takes 
as input data a combination of independent 
components and purposes to appropriately 
identify each of them (All unnecessary noise 
is deleted here). The two input features will 
be considered independent only if both their 
linear and not linear dependency is equal to 
zero. 

3. Linear Discriminant Analysis (LDA):  This 
technique aims to maximize the distance 
calculated between the mean of each class 
and minimalize the spreading within the 
class itself. This is considered as an optimal 
choice because maximizing the distance 
between the means of each instance when 
bulging the data in a lower-dimensional 
space can yield to better classification 
results. It is assumed that input data in LDA 
follows a Gaussian Distribution, 
consequently applying LDA to not Gaussian 
data can conceivably lead to poor 
classification results. 

4. Autoencoders: Autoencoders are also type 
dimensionality reduction technique. The 
difference between Autoencoders and other 
dimensionality reduction approaches is that 
Autoencoders use non-linear transformations 
to create data from a high dimension to a 
lower one. The different types of 
Autoencoders such as: Denoising 
Autoencoder, Variational Autoencoder, 
Convolutional Autoencoder and Sparse 

Autoencoder. An Autoencoder basically can 
be broken down into two main components: 

Encoder: It takes the input data and compress it, to 
remove all the probable noise and obstructive 
information. The output of the Encoder stage is 
typically called bottleneck or latent-space. 

Decoder: It takes the input i.e. encoded latent space 
and attempts to reproduce the original Autoencoder 
input by using compressed form. 

If all the given input features are independent of each 
other, then it will be difficult for autoencoder to 
encode and decode to input data into a lower-
dimensional space. 

Feature engineering is one of the most significant 
steps and also very time-consuming steps. It is 
very significant because the efficacy of many 
learning algorithms depends on heavily on input 
features; therefore, the performances of the same 
machine learning model with the identical 
configuration with a set of even slightly different 
features can vary expressively [3]. Similarly, it is 
very time-consuming because it requires 
perception and domain-specific knowledge of the 
data to create useful features. For example, the 
champions of the Grupo Bimbo Inventory 
Prediction competition quantified that 95% of their 
time was consumed on feature engineering and 
only 5% on modeling [4]. 

The area of automated feature engineering is 
relatively unexplored, which leaves plenty of 
opportunities for researchers for developing new 
methods. In this section, related research work of 
the study is presented. 

Kanter, J. M., and Veeramachaneni, K. (2015, 
October). Deep feature synthesis: Towards 
automating data science endeavors [1], which 
applies transformations to all presented features 
in dataset and selects the most capable among 
them. 

G. Katz, E. C. R. Shin, and D. Song., ExploreKit 
[5] is the most closely related work that attempts 
to automate feature engineering. It operates on 
relational datasets with a single table and 
exhaustively enumerates all possible features 
using a predefined set of operators. Then, it 
employs a machine learning based strategy for 
feature selection that considers characteristics of 
the dataset that may affect the likelihood of 
features being effective and sorts them based on 
their likelihood. ExploreKit relies on statistical tests 
to gather characteristics of the dataset and the 
candidate features and uses them to select 
features that seem most likely to be effective. 
While the approach is novel, its effectiveness is 
unclear. Also, it is unknown whether dataset 
characteristics can actually help estimate feature 
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importance. Lastly, using a classification algorithm to 
select features to improve the performance of 
another classification algorithm adds unnecessary 
complexity and uncertainty to the problem. 
ExploreKit, operates on relational datasets with a 
sole table for reasons described earlier. Similarly, 
AutoFE shares a similar collection of operators used 
to produce candidate features, which contains basic 
operators such as normalization, discretization, 
multiplication, and group-by-then-mean that are most 
frequently used in feature engineering. 

Hyunjoon Song, AutoFE: Efficient and Robust 
Automated Feature Engineering [6] generates a 
large set of new interpretable features by combining 
information in the original features. Given an 
augmented dataset, it discovers a set of features that 
significantly improves the performance of any 
traditional classification using an evolutionary 
algorithm. The architecture of AutoFE is composed 
of a feature generator, a splitter, a distributed system 
of feature selectors, and an evaluator. Given a 
dataset, AutoFE uses a feature generator to 
generate a large set of new interpretable features 
and augment the dataset. Then, it uses a splitter to 
split the augmented dataset into training data, 
validation data, and test data. With training data and 
validation data, we run feature selection in a 
distributed manner. After the best set of features 
obtained, the model uses an evaluator that trains a 
classification algorithm with the feature set on 
training data and evaluates its predictive 
performance on test data. Here, the author 
demonstrated the effectiveness and robustness of 
our approach by conducting an extensive evaluation 
on 8 datasets and 5 different classification 
algorithms. It showed that AutoFE can achieve an 
average improvement in predictive performance for 
all classification algorithms over their baseline 
performance obtained with the original features. 

DIFER: Differentiable Automated Feature 
Engineering [7], by Guanghui Zhu, Zhuoer Xu, Xu 
Guo, Chunfeng Yuan and Yihua Huang, the authors 
here proposed an effective gradient-based method 
called DIFER to perform differentiable automated 
feature engineering in a continuous vector space.  
Feature optimizer based on the encoder predictor-
decoder framework is introduced, which maps 
features into the continuous vector space via the 
encoder, optimizes the embedding along the gradient 
direction induced by the predictor, and recovers 
better features from the optimized embedding by the 
decoder. Based on the feature optimizer, it further 
proposed an evolutionary method to search for better 
features iteratively. Extensive experiments on 
classification and regression datasets carried by 
authors demonstrated that DIFER can significantly 
outperform the state of-the-art AutoFE methods in 
terms of both model performance and computational 
efficiency. 

 

III. PROPOSED METHODOLOGY 

To achieve high performance in any machine 
learning model it requires engineering good and 
relevant features. However, when any problem with 
dataset is given then it is often not clear which 
attributes are good for achieving better results. The 
result is that all available system variables / attributes 
(large numbers of common features) are used as 
attributes and the problem of identifying most 
important useful features is the leftover as the task of 
learning model.  Applying such a simple approach is 
not always good. If we manually select features then 
it will take considerate amount of time which 
becomes tedious and also problem specific. So, the 
work is proposed to consider only candidate features 
and then carry out the automated feature 
engineering. For the automated feature engineering 
Deep Feature Synthesis [1] framework is used. 

Deep Feature Synthesis considers input as a set 
of interconnected entities in which each entity has 
a primary key that acts as a unique identifier for 
each instance of an entity on which that the table 
is based. An entity optionally may also have a 
foreign key, which is uniquely referred to an 
instance of a related entity. An instance of any 
entity has fields which has one of the following 
data types: numeric data, categorical data, 
timestamps data and free text data. 

In deep feature synthesis mathematical function 
such as simple, direct, cumulative distribution 
features, relational aggregation features can be 
applied at two level i.e., Entity Level and 
Relational Level. Consider an entity  for which 
features are synthesized: 

Entity level features (EFEAT): Features 
calculated here are by considering the fields 
values in the table related to the entity  alone. 

Relational level: The features at this level are 
derived by combinedly analyzing entity  related 

to the entity . There are two possible categories 
of relationships between these two entities: 
forward and backward. 

1. Forward: A forward relationship is 
represented between an instance m of 
entity , with a single instance of other 
entity i of entity . This is called as the 
forward relationship because i is explicitly 
dependent on m. 

Direct Features (DFEAT): Direct features can be 
applied over the forward relationships. In these, 
features in a related entity  will be transferred 
directly as features for the . 

2. Backward: A backward relation is 
represented between an instance i of 
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entity , to all instances  in  that 

further has forward relationship to . 

Relational Features (RFEAT): Relational Features 
can be applied over backward relationships. In 
relationship with backward case r-agg and r-dist 
operations can be applied. The relational functions 
here can be applied because every target entity has 
a set of values related with it in the associated entity. 

The deep feature synthesis technique is an 
automatic feature synthesis algorithm which 
generates features that are also based on human 
intuition. The algorithm recursively scans along the 
relationships in the data then applies mathematical 
functions over the features in this scanning and 
further the results are appended in the base table. 
The final output achieved is an expanded base table 
which consists of features. 

In DFS complete dataset is given as input as a result 
features generated are not useful with respect to the 
target variable used for prediction. As a result, a 
modified approach is presented here which first 
generates candidate set of features and further 
automated features are generated on candidate set 
as result the time required to generate features is 
also reduced. 

Modified Architecture Overview 

The architecture presented in figure 1, is composed 
of candidate feature generator, automated feature 
extraction, data splitter. Given a dataset, a candidate 
feature generator is used which selects or rejects the 
attributes based on its usefulness measured with 
respect to target predictor variable. This can be 
achieved by calculating the ratio of missing column 
information and if this is beyond the threshold value 
(threshold value is defined by the data scientist) i.e., 
missing information is high then that column is not 
added to the candidate set. With this technique the 
candidate set of attributes are generated and then 
the deep feature synthesis is applied. 

Assuming here y
i
 represents the number of useful 

candidate-features generated and z
i
 represents 

actual features available in the dataset. As candidate 
feature generator now generates only useful features 
as a result,  y

i
 is less than z

i
 which in turn will also 

lead to a smaller number of recursive calls made by 
deep feature synthesis algorithm. This approach will 
lead to reduction in time and also useful features will 
be generated. 

Once this carried out the candidate features are 
forwarded to AutoML Feature Tools [1], which uses 
deep feature synthesis to generate large set of 
features but here it generates features on candidate 
set provided. Once the useful features are generated 
then data splitter is used to split the data as training 
and testing data for training model using machine 

learning algorithms (here in study decision tree 
classification is used) with feature set on training 
data. 

 

Figure 1: Proposed framework for generating 
features 

Once the features are generated, the next step is 
to build a predictive model framework for 
prediction problems. 

Further various continuous and categorical 
models can be used for prediction. The model 
used here is Decision Tree algorithm for predictive 
modelling. The dataset considered in this work on 
loan predictions so decision tree is selected for 
the measuring the performance. Decision trees 
are extremely useful and its being used in lots of 
financial industry. However, the approach can be 
used with any of the machine learning algorithm. 

Decision Tree Classification Algorithm 

Decision Tree [8], is a type of supervised learning 
algorithm that are used for classification as well as 
regression problems, but generally it is preferred 
for solving classification problems. This is a type 
of tree-structured classifier, where the internal 
nodes signify the features of a dataset, branches 
represent the decision rules and each leaf node 
represents the outcome of the decision made. 

To divide the dataset, various splitting rules may 
be chosen. The most common approach is to use 
an entropy measure for calculating the information 
gain (IG) of the split part of dataset, such that, 
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It begins at the root node and then recursively 
divides the dataset in such a way that the IG is 
highest for each split. This approach is a type of 
greedy algorithm, as a local optimum is resolved at 
each split in a try to find the global optimum. It can 
also be observed that IG measures the difference 
between entropy of the parent and the weighted sum 
of the entropy of the children, where each child is 

denoted  Entropy for each node is calculated 
as: 

 

While using Decision Trees, some hyperparameters 
are also specified. For instance, entropy is not the 
only way to measure, the Gini index is a common 
alternative. The maximum number of recursive 
partitions that are allowed is specified by maximum 
depth of the tree. The maximum branch specifies the 
maximum number of the branches that may be split 
in each node. 

The algorithm selected is executed to identify 
patterns, drawing inferences, and building, and 
training model by using 80% dataset and remaining 
20% of dataset is or validating model. The entire 
process is carried out while the model training is in 
progress. Once a model is trained, it provides 
various statistics that were computed during the 
training process in the model's evaluation report. The 
evaluation in machine learning pipeline provides 
percentage values for the following attributes of a 
classification model in the form of a confusion matrix: 

• True Positive (TP): A true positive result is 
achieved where the model correctly predicts 
the positive class. 

• True Negative (TN): A true negative result is 
achieved where the model correctly predicts 
the negative class. 

• False Positive (FP): A false positive result is 
encountered where the model incorrectly 
predicts the positive class. 

• False Negative (FN): A false negative result 
is encountered where the model incorrectly 
predicts the negative class. 

The evaluation parameters that are used as a 
metrics for generating evaluation report are: 

1. Accuracy 

The accuracy is the fraction of total predictions made 
by the model on the test data that were correct, as a 
percentage value. 

2. Precision 

The precision is given as the fraction of total positive 
predictions made by the model that were correct on 
test data. This indicates how much correct is model‘s 
prediction. 

 

3. Recall 

The recall is given by the fraction of the true positive 
predictions made by the model, considering out of all 
true positives and false negatives results. This 
parameter helps to select best model when there are 
highly associated false negative results. The recall is 
also termed as True Positive Rate. 

 

4. F1 Score 

The F1 score is a useful metric for finding balance 
between precision and recall. It is given as 
harmonic mean of the precision and recall. 

 

PERFORMANCE EVALUATION 

The efficacy of the work is demonstrated in this 
section by performing the tasks as discussed in 
figure 1. The automated feature extraction is 
carried out on using Deep Feature Synthesis as 
well as using modified approach to reduce the 
time required for generating relevant features is 
carried out. The work was compiled with system 
configuration of 16GB RAM and i7 Processor 
2.60GHz. 

The Home Credit Risk dataset which is publicly 
available on Kaggle platform [9] is considered, 
processed and features are generated. A 
prediction model is built with feedback which 
indicates improvement in accuracy when data with 
new trends are recorded and model is retrained. 
The objective of Home Credit Default Risk 
Prediction is to predict if a customer will default on 
loan based on complete data on past loan 
payments details. The credit default risk is given 
as the probability that loan is given and there is a 
chance that money will not be paid back on time. 
Also, such system helps to ensure that clients who 
are capable of paying loans are rejected‘. 

Automated Feature Engineering is carried out 
using featuretools library which uses deep feature 
synthesis to extract features. There are seven 
tables and here information is staggered across 
multiple tables these tables are referred as entity. 
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To carry out DFS understanding of relationship is 
important. Example: application entity has one row 
for each client and bureau has multiple previous 
loans for each parent in application data. This 
represents one is-to-many relationship, as 
represented in figure 2. Further bureau is 
represented as a parent of bureau_balance because 
in this each loan of bureau is represented as multiple 
monthly records of bureau_balance. 

 

Figure 2: Relationship between entities 

For each relationship parent and child variable are 
selected. After applying DFS 7583 features are 
generated using selected feature primitives. If 
manually we try to extract features then the domain 
knowledge is also required to understand the dataset 
and generate best suitable features. Also, the time 
required for generating these features will be 
increased with limited features. Total 121 features 
were generated using manual feature extraction 
techniques whereas modified approach using deep 
feature synthesis algorithm generated 5438 useful 
features as depicted in figure 3. 

 

Figure 3: Features Generated by Manual, DFS 
and M-DFS approach 

The work was compiled on system configuration with 
16GB RAM and it took 44.99 seconds for generating 
features using DFS and 39.91 seconds using 
modified approach as shown in in figure 4. The time 
here represents only the time require generating 
features. 

 

Figure 4: Feature Generation Time by DFS and M-
DFS 

Predictions using Decision Tree Classification 
Results 

The automatic features generated are further 
check with the target and important features are 
extracted. These important extracted features are 
further used to the train the model using training 
dataset. After training the performance is 
measured using Decision Tree classification. The 
classification accuracy of Decision Tree 
Classification is measured as a percentage value 
of correct predictions made by the model by the 
total number of predictions made. Performance of 
algorithm was evaluated at different stages of 
training set. The algorithm was trained with 
records sets containing 140000 records, 160000 
records, 180000 records and 200000 records. 

Table 1: Decision Tree Classification Results 

 

The accuracy, precision, recall rate, F1 score at all 
stages are measured and represented in table 1 
based on the confusion matrix generated during 
execution. The measured accuracy is depicted in 
figure 5. 

 

Figure 5: Decision Tree Classification 
Accuracy Chart 
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Automated feature engineering of AutoML helps to 
automate the time-consuming tasks of data scientists 
to generate features automatically. However, using 
the candidate features more useful features are 
generated in less time. 

V. CONCLUSION 

In today‘s world machine learning have deeply 
rooted in our lives.  To achieve good performance 
there is the need of human in every aspect of 
machine learning pipeline to complete the process. 
However, this becomes tedious and so there comes 
a need of automating these tasks. As a part of 
fulfilling aims, an automated feature engineering 
approach is presented that provided insights in the 
key architectural design of the system build which 
optimizes the time required for automatically 
extracting useful features. The work demonstrated 
the implementation of automated feature extraction 
and selection in detail. The number of useful features 
generated were 5438 as compared to 7583 features 
using DFS which generates all possible features that 
also adds on the time required to extract the 
features. However, the technique of generating 
candidate features first helped to generate features 
less in count but more useful features.  But the result 
achieved are considerably better. Further the model 
was trained using decision tree classification 
algorithm on the training data set and the accuracy 
measured is 80.65%. 
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