

Vimla Jethani1* Rohit Singhal2

w
w

w
.i
g

n
it

e
d

.i
n

1628

 Journal of Advances and Scholarly Researches in Allied Education
Vol. 16, Issue No. 9, June-2019, ISSN 2230-7540

A Modified Framework for Automated Feature
Extraction using Deep Feature Synthesis

Vimla Jethani1* Rohit Singhal2

1
 Research Scholar, Sunrise University, Alwar, Rajasthan, India

2
 Research Guide, Sunrise University, Alwar, Rajasthan, India

Abstract – In recent years, advances in machine learning have led to various innovations in to automating
various iterative and time-consuming tasks. One such tasks that data scientists carries out is feature
extraction. Feature Extraction is time consuming and requires domain knowledge and chances are few
features can be missed. As a result, automating this process will provide ease for data scientists as all
possible features can be generated. Automated Feature Engineering majorly focuses on reducing the
time require to generate features which can be used to train the models. As a result, a framework is
provided to reduce the time required for feature extraction by considering only candidate set of features
as an input that also helps to generate only useful features.

- X -

I. INTRODUCTION

One of the elements for a successful machine
learning technique is a properly organized data set.
The information needs to be cleaned and organized
for the algorithm to induce an excellent model.
Preparing a data set efficiently, usually takes a big
amount of time, and it calls for strong understanding
about the domain. One specifically crucial task is
feature engineering, which includes developing new
variables that make it less difficult for the algorithm to
reap a very good version. Recent years have visible
development in automating model choice and
hyperparameter tuning, however the most vital issue
of the machine learning, feature engineering, has in
large part been omitted. Automated feature
engineering can bring significant assistance to
individuals and organizations. This will help data
scientists to focus more on the other steps of
machine learning pipeline and iterate successfully.

Feature is a measurable attribute of the object in an
attempt to analyze datasets. Features are also
termed as ―variables‖ or ―attributes‖. For instance,
customer datasets often comprise of customer id,
income and date of joining and so on. Features are
the basic building blocks of datasets. In any
datasets, features appear as columns. The quality of
features there in the dataset have first-rate effect on
the quality of insights derived when used for machine
learning.

Feature engineering is the process of taking a
dataset and building explanatory variables —
features — that may be used to educate a machine
learning model for a prediction hassle. Often, fact is

spread across multiple tables and need to be
gathered into a single table with rows comprising
the observations and features in the columns.
Feature engineering if carried out properly then it
increases the predictive power of machine
learning algorithms.

Feature engineering is an art to create features
from raw data which in turn creates the big
difference between good model and bad model. It
is the important parameter for any successful
model.

The data used to generate predictive model
encompasses an outcome variable that holds data
which requires prediction. It also holds series of
predictor variable that holds data supposed to be
predictive of the outcome variable. To illustrate
consider an application to predict the property
prices. The data which shows actual prices of
property is termed as an outcome variable and the
data such as size of houses, the location of
house, the number of bedrooms in a house is
considered as predictor variables and are believed
to determine the property value. A "feature" in the
framework of predictive modeling is simply
another name for a predictor variable.

II. OVERVIEW OF BACKGROUND
AND PREVIOUS WORK

Nowadays, it is becoming quite common to work
with datasets which consists of hundreds (or even
thousands) of features. However, in machine
learning the dimensionality of a dataset is equal to
number of variables that are used to represent it.

Vimla Jethani1* Rohit Singhal2

w
w

w
.i
g

n
it

e
d

.i
n

1629

 A Modified Framework for Automated Feature Extraction using Deep Feature Synthesis

The aim of feature extraction is to reduce the number
of features in the dataset by creating new features
from the existing ones or by applying
transformations. However, the original features are
then discarded. The reduced new set of features
consists summarized information about original
version. The various manual feature extraction
techniques are [2]:

1. Principal Component Analysis (PCA):
This technique is also termed as linear
dimensionality reduction technique and is
one of most commonly used techniques. In
this technique, the original data is taken as
input and trial is carried out to find a
combination of the input features which can
best summarize the original data distribution
so that the original dimensions can be
reduced. This is achieved by exploiting
variances and minimalizing the
reconstruction error by looking at pair wised
distances. In this the original data is
projected into a set of orthogonal axes and
the axes gets ranked based on the order of
importance.

2. Independent Component Analysis (ICA):
This technique is also as a linear
dimensionality reduction method that takes
as input data a combination of independent
components and purposes to appropriately
identify each of them (All unnecessary noise
is deleted here). The two input features will
be considered independent only if both their
linear and not linear dependency is equal to
zero.

3. Linear Discriminant Analysis (LDA): This
technique aims to maximize the distance
calculated between the mean of each class
and minimalize the spreading within the
class itself. This is considered as an optimal
choice because maximizing the distance
between the means of each instance when
bulging the data in a lower-dimensional
space can yield to better classification
results. It is assumed that input data in LDA
follows a Gaussian Distribution,
consequently applying LDA to not Gaussian
data can conceivably lead to poor
classification results.

4. Autoencoders: Autoencoders are also type
dimensionality reduction technique. The
difference between Autoencoders and other
dimensionality reduction approaches is that
Autoencoders use non-linear transformations
to create data from a high dimension to a
lower one. The different types of
Autoencoders such as: Denoising
Autoencoder, Variational Autoencoder,
Convolutional Autoencoder and Sparse

Autoencoder. An Autoencoder basically can
be broken down into two main components:

Encoder: It takes the input data and compress it, to
remove all the probable noise and obstructive
information. The output of the Encoder stage is
typically called bottleneck or latent-space.

Decoder: It takes the input i.e. encoded latent space
and attempts to reproduce the original Autoencoder
input by using compressed form.

If all the given input features are independent of each
other, then it will be difficult for autoencoder to
encode and decode to input data into a lower-
dimensional space.

Feature engineering is one of the most significant
steps and also very time-consuming steps. It is
very significant because the efficacy of many
learning algorithms depends on heavily on input
features; therefore, the performances of the same
machine learning model with the identical
configuration with a set of even slightly different
features can vary expressively [3]. Similarly, it is
very time-consuming because it requires
perception and domain-specific knowledge of the
data to create useful features. For example, the
champions of the Grupo Bimbo Inventory
Prediction competition quantified that 95% of their
time was consumed on feature engineering and
only 5% on modeling [4].

The area of automated feature engineering is
relatively unexplored, which leaves plenty of
opportunities for researchers for developing new
methods. In this section, related research work of
the study is presented.

Kanter, J. M., and Veeramachaneni, K. (2015,
October). Deep feature synthesis: Towards
automating data science endeavors [1], which
applies transformations to all presented features
in dataset and selects the most capable among
them.

G. Katz, E. C. R. Shin, and D. Song., ExploreKit
[5] is the most closely related work that attempts
to automate feature engineering. It operates on
relational datasets with a single table and
exhaustively enumerates all possible features
using a predefined set of operators. Then, it
employs a machine learning based strategy for
feature selection that considers characteristics of
the dataset that may affect the likelihood of
features being effective and sorts them based on
their likelihood. ExploreKit relies on statistical tests
to gather characteristics of the dataset and the
candidate features and uses them to select
features that seem most likely to be effective.
While the approach is novel, its effectiveness is
unclear. Also, it is unknown whether dataset
characteristics can actually help estimate feature

Vimla Jethani1* Rohit Singhal2

w
w

w
.i
g

n
it

e
d

.i
n

1630

 Journal of Advances and Scholarly Researches in Allied Education
Vol. 16, Issue No. 9, June-2019, ISSN 2230-7540

importance. Lastly, using a classification algorithm to
select features to improve the performance of
another classification algorithm adds unnecessary
complexity and uncertainty to the problem.
ExploreKit, operates on relational datasets with a
sole table for reasons described earlier. Similarly,
AutoFE shares a similar collection of operators used
to produce candidate features, which contains basic
operators such as normalization, discretization,
multiplication, and group-by-then-mean that are most
frequently used in feature engineering.

Hyunjoon Song, AutoFE: Efficient and Robust
Automated Feature Engineering [6] generates a
large set of new interpretable features by combining
information in the original features. Given an
augmented dataset, it discovers a set of features that
significantly improves the performance of any
traditional classification using an evolutionary
algorithm. The architecture of AutoFE is composed
of a feature generator, a splitter, a distributed system
of feature selectors, and an evaluator. Given a
dataset, AutoFE uses a feature generator to
generate a large set of new interpretable features
and augment the dataset. Then, it uses a splitter to
split the augmented dataset into training data,
validation data, and test data. With training data and
validation data, we run feature selection in a
distributed manner. After the best set of features
obtained, the model uses an evaluator that trains a
classification algorithm with the feature set on
training data and evaluates its predictive
performance on test data. Here, the author
demonstrated the effectiveness and robustness of
our approach by conducting an extensive evaluation
on 8 datasets and 5 different classification
algorithms. It showed that AutoFE can achieve an
average improvement in predictive performance for
all classification algorithms over their baseline
performance obtained with the original features.

DIFER: Differentiable Automated Feature
Engineering [7], by Guanghui Zhu, Zhuoer Xu, Xu
Guo, Chunfeng Yuan and Yihua Huang, the authors
here proposed an effective gradient-based method
called DIFER to perform differentiable automated
feature engineering in a continuous vector space.
Feature optimizer based on the encoder predictor-
decoder framework is introduced, which maps
features into the continuous vector space via the
encoder, optimizes the embedding along the gradient
direction induced by the predictor, and recovers
better features from the optimized embedding by the
decoder. Based on the feature optimizer, it further
proposed an evolutionary method to search for better
features iteratively. Extensive experiments on
classification and regression datasets carried by
authors demonstrated that DIFER can significantly
outperform the state of-the-art AutoFE methods in
terms of both model performance and computational
efficiency.

III. PROPOSED METHODOLOGY

To achieve high performance in any machine
learning model it requires engineering good and
relevant features. However, when any problem with
dataset is given then it is often not clear which
attributes are good for achieving better results. The
result is that all available system variables / attributes
(large numbers of common features) are used as
attributes and the problem of identifying most
important useful features is the leftover as the task of
learning model. Applying such a simple approach is
not always good. If we manually select features then
it will take considerate amount of time which
becomes tedious and also problem specific. So, the
work is proposed to consider only candidate features
and then carry out the automated feature
engineering. For the automated feature engineering
Deep Feature Synthesis [1] framework is used.

Deep Feature Synthesis considers input as a set
of interconnected entities in which each entity has
a primary key that acts as a unique identifier for
each instance of an entity on which that the table
is based. An entity optionally may also have a
foreign key, which is uniquely referred to an
instance of a related entity. An instance of any
entity has fields which has one of the following
data types: numeric data, categorical data,
timestamps data and free text data.

In deep feature synthesis mathematical function
such as simple, direct, cumulative distribution
features, relational aggregation features can be
applied at two level i.e., Entity Level and
Relational Level. Consider an entity for which
features are synthesized:

Entity level features (EFEAT): Features
calculated here are by considering the fields
values in the table related to the entity alone.

Relational level: The features at this level are
derived by combinedly analyzing entity related

to the entity . There are two possible categories
of relationships between these two entities:
forward and backward.

1. Forward: A forward relationship is
represented between an instance m of
entity , with a single instance of other
entity i of entity . This is called as the
forward relationship because i is explicitly
dependent on m.

Direct Features (DFEAT): Direct features can be
applied over the forward relationships. In these,
features in a related entity will be transferred
directly as features for the .

2. Backward: A backward relation is
represented between an instance i of

Vimla Jethani1* Rohit Singhal2

w
w

w
.i
g

n
it

e
d

.i
n

1631

 A Modified Framework for Automated Feature Extraction using Deep Feature Synthesis

entity , to all instances in that

further has forward relationship to .

Relational Features (RFEAT): Relational Features
can be applied over backward relationships. In
relationship with backward case r-agg and r-dist
operations can be applied. The relational functions
here can be applied because every target entity has
a set of values related with it in the associated entity.

The deep feature synthesis technique is an
automatic feature synthesis algorithm which
generates features that are also based on human
intuition. The algorithm recursively scans along the
relationships in the data then applies mathematical
functions over the features in this scanning and
further the results are appended in the base table.
The final output achieved is an expanded base table
which consists of features.

In DFS complete dataset is given as input as a result
features generated are not useful with respect to the
target variable used for prediction. As a result, a
modified approach is presented here which first
generates candidate set of features and further
automated features are generated on candidate set
as result the time required to generate features is
also reduced.

Modified Architecture Overview

The architecture presented in figure 1, is composed
of candidate feature generator, automated feature
extraction, data splitter. Given a dataset, a candidate
feature generator is used which selects or rejects the
attributes based on its usefulness measured with
respect to target predictor variable. This can be
achieved by calculating the ratio of missing column
information and if this is beyond the threshold value
(threshold value is defined by the data scientist) i.e.,
missing information is high then that column is not
added to the candidate set. With this technique the
candidate set of attributes are generated and then
the deep feature synthesis is applied.

Assuming here y
i
 represents the number of useful

candidate-features generated and z
i
 represents

actual features available in the dataset. As candidate
feature generator now generates only useful features
as a result, y

i
 is less than z

i
 which in turn will also

lead to a smaller number of recursive calls made by
deep feature synthesis algorithm. This approach will
lead to reduction in time and also useful features will
be generated.

Once this carried out the candidate features are
forwarded to AutoML Feature Tools [1], which uses
deep feature synthesis to generate large set of
features but here it generates features on candidate
set provided. Once the useful features are generated
then data splitter is used to split the data as training
and testing data for training model using machine

learning algorithms (here in study decision tree
classification is used) with feature set on training
data.

Figure 1: Proposed framework for generating
features

Once the features are generated, the next step is
to build a predictive model framework for
prediction problems.

Further various continuous and categorical
models can be used for prediction. The model
used here is Decision Tree algorithm for predictive
modelling. The dataset considered in this work on
loan predictions so decision tree is selected for
the measuring the performance. Decision trees
are extremely useful and its being used in lots of
financial industry. However, the approach can be
used with any of the machine learning algorithm.

Decision Tree Classification Algorithm

Decision Tree [8], is a type of supervised learning
algorithm that are used for classification as well as
regression problems, but generally it is preferred
for solving classification problems. This is a type
of tree-structured classifier, where the internal
nodes signify the features of a dataset, branches
represent the decision rules and each leaf node
represents the outcome of the decision made.

To divide the dataset, various splitting rules may
be chosen. The most common approach is to use
an entropy measure for calculating the information
gain (IG) of the split part of dataset, such that,

Vimla Jethani1* Rohit Singhal2

w
w

w
.i
g

n
it

e
d

.i
n

1632

 Journal of Advances and Scholarly Researches in Allied Education
Vol. 16, Issue No. 9, June-2019, ISSN 2230-7540

It begins at the root node and then recursively
divides the dataset in such a way that the IG is
highest for each split. This approach is a type of
greedy algorithm, as a local optimum is resolved at
each split in a try to find the global optimum. It can
also be observed that IG measures the difference
between entropy of the parent and the weighted sum
of the entropy of the children, where each child is

denoted Entropy for each node is calculated
as:

While using Decision Trees, some hyperparameters
are also specified. For instance, entropy is not the
only way to measure, the Gini index is a common
alternative. The maximum number of recursive
partitions that are allowed is specified by maximum
depth of the tree. The maximum branch specifies the
maximum number of the branches that may be split
in each node.

The algorithm selected is executed to identify
patterns, drawing inferences, and building, and
training model by using 80% dataset and remaining
20% of dataset is or validating model. The entire
process is carried out while the model training is in
progress. Once a model is trained, it provides
various statistics that were computed during the
training process in the model's evaluation report. The
evaluation in machine learning pipeline provides
percentage values for the following attributes of a
classification model in the form of a confusion matrix:

• True Positive (TP): A true positive result is
achieved where the model correctly predicts
the positive class.

• True Negative (TN): A true negative result is
achieved where the model correctly predicts
the negative class.

• False Positive (FP): A false positive result is
encountered where the model incorrectly
predicts the positive class.

• False Negative (FN): A false negative result
is encountered where the model incorrectly
predicts the negative class.

The evaluation parameters that are used as a
metrics for generating evaluation report are:

1. Accuracy

The accuracy is the fraction of total predictions made
by the model on the test data that were correct, as a
percentage value.

2. Precision

The precision is given as the fraction of total positive
predictions made by the model that were correct on
test data. This indicates how much correct is model‘s
prediction.

3. Recall

The recall is given by the fraction of the true positive
predictions made by the model, considering out of all
true positives and false negatives results. This
parameter helps to select best model when there are
highly associated false negative results. The recall is
also termed as True Positive Rate.

4. F1 Score

The F1 score is a useful metric for finding balance
between precision and recall. It is given as
harmonic mean of the precision and recall.

PERFORMANCE EVALUATION

The efficacy of the work is demonstrated in this
section by performing the tasks as discussed in
figure 1. The automated feature extraction is
carried out on using Deep Feature Synthesis as
well as using modified approach to reduce the
time required for generating relevant features is
carried out. The work was compiled with system
configuration of 16GB RAM and i7 Processor
2.60GHz.

The Home Credit Risk dataset which is publicly
available on Kaggle platform [9] is considered,
processed and features are generated. A
prediction model is built with feedback which
indicates improvement in accuracy when data with
new trends are recorded and model is retrained.
The objective of Home Credit Default Risk
Prediction is to predict if a customer will default on
loan based on complete data on past loan
payments details. The credit default risk is given
as the probability that loan is given and there is a
chance that money will not be paid back on time.
Also, such system helps to ensure that clients who
are capable of paying loans are rejected‘.

Automated Feature Engineering is carried out
using featuretools library which uses deep feature
synthesis to extract features. There are seven
tables and here information is staggered across
multiple tables these tables are referred as entity.

Vimla Jethani1* Rohit Singhal2

w
w

w
.i
g

n
it

e
d

.i
n

1633

 A Modified Framework for Automated Feature Extraction using Deep Feature Synthesis

To carry out DFS understanding of relationship is
important. Example: application entity has one row
for each client and bureau has multiple previous
loans for each parent in application data. This
represents one is-to-many relationship, as
represented in figure 2. Further bureau is
represented as a parent of bureau_balance because
in this each loan of bureau is represented as multiple
monthly records of bureau_balance.

Figure 2: Relationship between entities

For each relationship parent and child variable are
selected. After applying DFS 7583 features are
generated using selected feature primitives. If
manually we try to extract features then the domain
knowledge is also required to understand the dataset
and generate best suitable features. Also, the time
required for generating these features will be
increased with limited features. Total 121 features
were generated using manual feature extraction
techniques whereas modified approach using deep
feature synthesis algorithm generated 5438 useful
features as depicted in figure 3.

Figure 3: Features Generated by Manual, DFS
and M-DFS approach

The work was compiled on system configuration with
16GB RAM and it took 44.99 seconds for generating
features using DFS and 39.91 seconds using
modified approach as shown in in figure 4. The time
here represents only the time require generating
features.

Figure 4: Feature Generation Time by DFS and M-
DFS

Predictions using Decision Tree Classification
Results

The automatic features generated are further
check with the target and important features are
extracted. These important extracted features are
further used to the train the model using training
dataset. After training the performance is
measured using Decision Tree classification. The
classification accuracy of Decision Tree
Classification is measured as a percentage value
of correct predictions made by the model by the
total number of predictions made. Performance of
algorithm was evaluated at different stages of
training set. The algorithm was trained with
records sets containing 140000 records, 160000
records, 180000 records and 200000 records.

Table 1: Decision Tree Classification Results

The accuracy, precision, recall rate, F1 score at all
stages are measured and represented in table 1
based on the confusion matrix generated during
execution. The measured accuracy is depicted in
figure 5.

Figure 5: Decision Tree Classification
Accuracy Chart

Vimla Jethani1* Rohit Singhal2

w
w

w
.i
g

n
it

e
d

.i
n

1634

 Journal of Advances and Scholarly Researches in Allied Education
Vol. 16, Issue No. 9, June-2019, ISSN 2230-7540

Automated feature engineering of AutoML helps to
automate the time-consuming tasks of data scientists
to generate features automatically. However, using
the candidate features more useful features are
generated in less time.

V. CONCLUSION

In today‘s world machine learning have deeply
rooted in our lives. To achieve good performance
there is the need of human in every aspect of
machine learning pipeline to complete the process.
However, this becomes tedious and so there comes
a need of automating these tasks. As a part of
fulfilling aims, an automated feature engineering
approach is presented that provided insights in the
key architectural design of the system build which
optimizes the time required for automatically
extracting useful features. The work demonstrated
the implementation of automated feature extraction
and selection in detail. The number of useful features
generated were 5438 as compared to 7583 features
using DFS which generates all possible features that
also adds on the time required to extract the
features. However, the technique of generating
candidate features first helped to generate features
less in count but more useful features. But the result
achieved are considerably better. Further the model
was trained using decision tree classification
algorithm on the training data set and the accuracy
measured is 80.65%.

REFERENCES

[1] Kanter, J. M., and Veeramachaneni, K.
(2015, October). Deep feature synthesis:
Towards automating data science
endeavors. In 2015 IEEE International
Conference on Data Science and Advanced
Analytics (DSAA) (pp. 1-10). IEEE.

[2] Diving Deeper into Dimension Reduction
with Independent Components Analysis
(ICA), Paperspace. Accessed at
https:/blog.paperspace.com

[3] Pedro Domingos (2012). A few useful things
to know about machine learning.
Communications of the ACM, 55(10): pp.
78–87.

[4] Kaggle Team (2016). Grupo Bimbo Inventory
Demand, Winners‘ Interview: Clustifier &
Alex & Andrey.
http://blog.kaggle.com/2016/09/27/grupo-
bimbo-inventorydemand-winners-
interviewclustifier-alex-andrey.

[5] G. Katz, E. C. R. Shin, and D. Song (2016).
Explorekit: Automatic feature generation and
selection. IEEE International Conference on
Data Mining,.

[6] Hyunjoon Song (2018). Auto FE: Efficient
and Robust Automated Feature Engineering,
Massachusetts Institute of Technology,
Department of Electrical Engineering and
Computer Science.

[7] Guanghui Zhu, Zhuoer Xu, Xu Guo,
Chunfeng Yuan and Yihua Huang (2020).
DIFER: Differentiable Automated Feature
Engineering, arXiv - CS - Machine Learning,
2020-10-17, DOI: arxiv-2010.08784

[8] Provost, F., & Fawcett, T. (2015). Data
Science for Business. United States: O'Reilly
Media

[9] Home Credit Default Risk Data Set:
https://www.kaggle.com/

Corresponding Author

Vimla Jethani*

Research Scholar, Sunrise University, Alwar,
Rajasthan, India

