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INTRODUCTION 

Consider the fractional differential equations with 
initial conditions as given below 

 

where 
S a

s D  is the S  time scale Riemann Liouville 

fractional derivative of order a . 

S

s I  the fractional integral of Riemann-Liouville and 
 0 0,

S
s s   is an arbitrary interval on S. 

As a part of theoretical & potential applications, 
theory of time lamina calculus is involved to concern 
together difference and differential equation [1]. 

suppose that  h s  is a continuous function with right 
dense. Many authors have tried and proved the life 
and one-of-a-kindness of the first order differential 
equations with initial and boundary time scales 
conditions by various methods and criteria. 

The idea of this content arises from reference papers 
[10-24] in which Krasnoselskii-Krein and Nagumo 
conditions on non-linear term h, excluding Lipschitz 
assumption are exposed to derive the main results. 

Consider the first of the following orders ordinary 
differential equation with two classes 

 

 

and fractional differential equation with fractional 
order 

 

In section 2, few definitions and fundamental 
statements are added in such a way to prove main 
results. 

In section 3, the main theorem is illustrated. We 
first set up unique solution for first order problem 
under Krasnoselskii-Krein conditions. Then we 
extend the proof to successive approximation, 
which converge to unique solution. 

2. PRELIMINARIES 

We recollect basic consequence and definition 
from time lamina calculus. 

A chronometer Let card (S)>=2 is a non-empty 
closed subset of S. The forward and backward 

jump operators , : S S    are respectively defined 
by 

 

& 



 

 

Dr. R. Prahalatha1* Dr. M. M. Shanmugapriya2 

w
w

w
.i
g

n
it

e
d

.i
n

 

64 

 

 Existence Results for a System of Fractional Differential Equations with Fractional Order Random Time 
Scale 

 

The point s S  is defined as follows 

   

   

; left dense ; left scattered

; right dense ; right scattered

s s s s

s s s s

 

 

 

 
 

Let  

 \ max ; when admitsa left scattered maximum

S ; otherwise

S S S S

S





 




 

Denote .sA A S   SI
 is interval of ,S  where I  is an 

interval of .R  

Definition 2.1. Delta Derivative [1] 

Assume :h S R  and let .s S  Define 

 

provided the limit exist. Here  h s

 is called delta 

derivative of h  at .s  Also, h  is referred as delta 

differentiable on S

 provided h

 exists for all .s s  

The function :h s R   is called the delta derivative 

of h  on .s  

Definition 2.2.  [6] 

A function :h S R  Only if it is rd-continuous is it 
considered rd-continuous right dense point 

continuous in S  and its left sided limits exists at left 

dense points in .S  rdC  denotes a Banach space with 
norm and a set of rd-continuous functions. Similarly, 

a function :h S R  is called ld-continuous only if it 

is continuous at left dense point in S . The set of ld-

continuous function :h S R  is represented by ldC . 

For  ,define .rd rdh C h Sup h s   

Definition 2.3.  Delta antiderivative [6] 

A function  : ,
S

H R    A function's delta antiderivative 
is referred to as a function's delta 

antiderivative.  : ,
S

H R    provided H  is continuous 

on  , ,
S

 
 delta-differentiable on  ,

S
   and    H s h s   

for all  , .
S

s    Then we define the   integral oh h  

from to   by 

 

Definition 2.4.  Fractional integral on time scales [6] 

Suppose S  is a time scale,  ,   is an interval of 1S  & 
f  is an integrable function on  , .   Let 0 1.a   Then 

the left fractional integral of order a  of f  is defined 
by  

 

where   is a gamma function   

Definition 2.5.  [Fractional Riemann Liouville 
Derivative on time Scale] 

Let S  be a time scale, , 0 1,s S a    and : .f S R  And 
there was the left. Fractional derivative of order 

Riemann-Liouville a  of f  is defined by 

 

We can use 
S a

s I
 instead of 0

S a

s sI
 and 

S a

s I
 instead 

of 0

S a

s sD
when 0.s 

 

Lemma 2.1. Let h  be a non-decreasing 

continuous function on the  , .
S

   We define 

extension h  of h  to the non-imaginary interval  ,   
by 

 

 

    ,h s h s   for every  , .
S

s    

Lemma 2.2. [5] Let  be continuous. 
Then the general solution of the differential 

equation  is given by (2.11) 

 

Lemma 2.3. [6] For any function h  integrable on 
 0 0,

S
s s  , we have the following 
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Lemma 2.4. [6] Let    0 0, & 0 1.
S

h C s s a   
 If 

 
0

1 0,S a

s s s
I h s




 then 

 

Lemma 2.5. [6] Let  0 1a   and  0 0: , .
S

h s s R R    The 

function v  is a solution of problem (1.2) if and only if 
it is a solution of the following integral equation 

 

Lemma 2.6. [22] The of the equation 

 

is given by 

 

where 
  

0

1

1
1

1 and &
1

a

RL sL a D 


   
  is the fractional 

Riemann-Liouville derivative of order  0,1a  on the 

interval  0 0, .s s   

3. MAIN RESULTS 

To prove the main result, define  

    0 0 0, : , , , , .T s y s s s y R        
 

3.1. Results of Uniqueness for first order 
Ordinary Differential Equation: 

Theorem 3.1.1. (Conditions of Krasnoselskii-Krein) 

Let  ,h s y  be non-discontinuous in 0T  and for all 
    0, , ,s y s y T  satisfying 

 

 

for some positive constants c and k; also the non-

imaginary number   which lies between 0 and 1 

such that  1 1.k    Then, the first order initial value 

problem (1.2) has only one solution on  0 0, .
S

s s   

Proof: 

Suppose p and q are two solutions of (1.2) in  0 0, .
S

s s   
We have to prove that .p q  

Let us define  s  and  Q s  by 

 

Such that   is the extension of   to the real interval 
 0 0, .s s   From condition (A2) that 

 

Consequently, since        0 00, 0 for ,and  =c ,Q s Q s s s Q s s     

for every  0 0, .
S

s s s    It is concluded from (3.18) and 

(3.19) that     ,Q s cQ s   for every 

 

That is              1 1
1 1Q s Q s ds c Q Q s ds

   
     . It is reduced to 

 

Hence 

 

 

That is the exponent of s  in the above constraint is 

non-negative, since  
1

1
1k 


 . 

Hence 
 

0

lim 0.
s s

s



 Therefore if we define  0 0,s   then 

the function is rd-continuous in  0 0, .
S

s s   To prove 
0   on  0 0, .

S
s s   Assume that   does not disappear 

at some points s; that is   0s   on  0 0, .s s   Then 

there arise a maximum 0,n   when s  equals to 

some 1 0 1 0:s s s s     such that      1 0 1, for , .
S

t n s t s s     
From condition (A1), we have 

 

which is a contradiction. Hence, there exist unique 
solution. 

Theorem 3.1.2. Kooi‘s Condition 

Let  ,h s y  be non-discontinuous in 0T  and for all 
    0, , ,s y s y T

 satisfying 
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(B1) 
   

1

0 0, , ,h s y h s y k s s y y s s


    
 

(B2) 
   0 , , ,

b
s s h s y h s y c y y


   

 for some positive 

constants c  and k  from real line. 

Also, real numbers ,b   are defined as 
 0 1, and 1 1 .b k b        Then the first order initial 

value problem (1.2) has only one solution on  0 0, .
S

s s   

Proof. Similar procedure from theorem 3.1.1 is 
followed here to prove the given statement. 

3.2. Existence of Solution on Time Lamina by 
Krasnoselskii-Krein Conditions 

Theorem 3.2.3. Assume that conditions (A1) and 
(A2) are satisfied, then the consecutive estimations 
given by 

 

Converge uniformly to the unique solution p of (1.2) 

on  0 0, ,s s   where  min , / ,N    and N  is the bound 

for h  on 0.T  

Proof: Since we proved uniqueness in theorem 
3.1.1, it is enough to prove existence of solution by 
Arzela-Ascoli theorem. 

Step:1 The consecutive approximations  1 , 0,1,2,...mp m   
given by (3.25) are well defined and continuous. 

 

This gives the following result for 

 

By induction, the sequence   1jp s  is well defined and 

uniformly bounded on  0 0, .
S

s s   

Step: 2 To prove x  is continuous function in  0 0, ,
S

s s   

where x  is defined by 

 

For 

 

we have 

 

Also 

 

 

In (3.29), the right side expression in inequality is at 

most    2 2 12X s N s s    for large m  if 0   provided 

that 2 1 .
2

s s
N


 

 

For some arbitrary   and interchangeable 1 2,s s  we 
get 

 

Hence X  is continuous on 
 0 0, .

S
s s 

 By 
condition (A2) and definition of successive 
approximations, we get 

 

The sequence  mp  is equicontinuous: that is 
 1 2 0 0, ,

S
s s s s    for each function mp  and some 

positive .  If there exist N


 

 such that 2 1 ,s s    then 

 

The family  jp  fulfills all conditions of Arzela Ascoli 

theorem in  0 0, .rd S
c s s   Hence there exists a 

subsequence  jkp  converging uniformly on 
 0 0, .kS
s s as j   Let us assume 

 

If  1 0 ,j jp p as j  
 then the limiting case of any 

subsequence is the only one solution [unique 

solution] p  of (3.25). It follows that the entire 

sequence  jp  converges uniformly to .p  

To show that  *0.( )X ie n s  is null. Set 

 

and by denoting    * .kQ s s X s  To show that 
 *

0
lim 0.
s

s



 Hence 

* 0   by absurdity. 

Assume that  * 0s   for  0 0, ;
S

s s s    then there exists 

1s  such that 
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 
 

 
0 0

* *

1
,

0 max .
S

s s s
n s s


 

 
  

 

By condition (A1), 

 

Which is contradiction. So 
* 0.   Hence (3.25) 

converge uniformly to a unique solution   of (1.2) on 
 0 0,

S
s s   by successive approximation. 

3.3 Fractional order ODE and its uniqueness of 
Solution 

Theorem 3.3.1. [Conditions of Krasnoselskii-Krein] 

Denote      0 0 0 0, , | , ,u S S
C s s R p p C s s R        and 

    
1

0 0 0, , .
v

S
s s p C s s R


    

Let  ,h s y  be continuous in 0T  and satisfying for all 
    0, , ,s y s y T  

(C1)  
      0 0, , ,

a
h s y h s y kl a s s y y s s


     

 

(C2)     , ,h s y h s y c y y


  
 where , ,c l k  are 

negative constants such that 1,k kl a   and  
1

1
1k 


 , 

and all real numbers   lies between 0 and 1. Then 
the fractional order initial value problem (1.3) has 

only one solution on   0 0, .s s   

Proof: Suppose p and q are two solutions of (1.3) in 
 0 0, .

S
s s   To show that 

.p q
 

To prove the result, define    ands Q s  by 

 

Such that 
ˆ
  is the extension of   to the real interval 

 0 0, .s s   From condition (B2), it follows 

 

Also        0 0
ˆ , for every , .S a

s S
D Q s s Q s s s s       for every 

 0 0, .
S

s s s    

By (3.37) and (3.38) and using lemma 2.6, we get for 
every 

 

where andL   are defined in lemma 2.6. 

Moreover, define 

 
 

 0

.
k

s
s

s s


 


 

We get 

 

for every 

 0 0, .s s s  
 

Hence 

 
0

lim 0.
s s

s



 

Therefore, if we define  0 0,s   then the function is 

rd-continuous in  0 0, .
S

s s   

Next to show that 0.   Assume contrarily   does 

not disappear at few points 
;s
 that is   0s 

 on 

 0 0, .
S

s s 
 Then there exists a maximum 0n   

attained when s  is equal to some 1 0 1 0:s s s s     

such that      1 0 1, for , .
S

t n s t s s     

By hypothesis (B1), we have  

     1 0 1

k
n s s s s 


  

 

 

which is contradiction. Hence the solution is 
unique. 

Theorem 3.3.2. Conditions of Kooi‘s 

Let  ,h s y  be non-discontinuous in 0T  and for all 
    0, , ,s y s y T  satisfying 

(D1)        0 0, , ,
a

h s y h s y kl a s s y y s s


     
 

(D2)     0 , ,
b

s s h s y h s y c y y


     for some non-
negative constants ,c l  and ;k  also the non-

imaginary positive numbers , , ,b k l  are such that 

0 1b     and  1 1 &k b   .kl a  Then, the first 
order initial value problem of first order FDE (1.3) 

has at most one solution on  0 0, .
S

s s   
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Proof: The proof of this theorem is similar to the last 
theorem 3.3.1. 

3.4. Krasnoselskii-Krein Conditions on Time 
Lamina and Existence of Solution of FDE 

Assume that (C1) and (C2) are satisfied; then the 
consecutive approximation towards solution is given 
by 

 

tends to a finite limit uniformly to the unique solution 

p  of (1.3) on  0 0, ,s s   where  
 

1

1
min ,

aa

N


 

 
   

   
  

    and 

N  is the bound for h  on 0.T    (3.43) 

Proof: Since uniqueness of the solution have been 
proved by theorem 3.3.1, we have to prove the 
existence of solution by Arzela Ascoli theorem. The 

successive approximation  1 , 0,1,2,...mp m   given in 
(3.42) are properly defined and continuous. 

 

 

By mathematical induction, the flow of sequence 
  1jp s  is properly defined and uniformly bounded on 

 0 0, .
S

s s   

Step: 2 To prove X is continuous function in  0 0, ,
S

s s   
where X is defined by 

 

For  1 2 0 0, , ,
S

s s s s  
 we have 

 

That is  

 

 

The right side of inequality (3.47) is at most 

 for large 

 
1

2 1

1
if 0 given that .

4

aa
m s s

N




  
    

   

Since   is arbitrary and 1 2,s s
 can be 

interchangeable, then  

 

That is X continuous on  0 0, .
S

s s   

By condition (C2) and the definition consecutive 

approximations, we get 

 

therefore the sequence  mp
 is equicontinuous. For 

each function mp  and 0,    1 2 0 0, , .
S

s s s s  
 If there 

exists 

 
2 1

1
;

a a
s s

N


 

  
   

 then 
   

 
 1 1 1 2 1 2

2

1

a

m m

N
p s p s s s

a
    

  . 

Let us denote 
     *

1lim .jk jk
k

n s p s p s


 
 Further, if 

 1 0 as ,j jp p j    then the limiting case of any 
subsequence is the unique solution p of (3.42). 

Let 
 

 
   

0

1
s

a a

s

c
Q s s t X t dt

a


 
 

 and define    * ks s X s   and 

then using lemma 2.6, we get that    1 0

j ka
s L s s


   

which gives that 
 *

0
lim 0.
s

s



 And also proved that 

* 0   by absurdity. presume that  * 0s   at any point 

in  0 0, ;
S

s s 
 then there exist 1s  such that 

 
 

 
1 0 0

* *

1
,

0 max .
S

s s s
n s s


 

 
  

 For condition (C1), we obtain 

 

 

this is an inconsistency. (i.e.) 
* 0.   Hence Picard‘s 

successive approximation (3.42) tends to finite limit 
(uniform convergence) to unique solution p of (1.2) 

on  0 0, .
S

s s   

CONCLUSION 

Hence, we can establish the solution of non-linear 

FDE with order  0,1a  by few basic named 
conditions. 
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