
 

 

Ashok Kumar Ray1* Dr. R. N. Roy2 

w
w

w
.i
g

n
it

e
d

.i
n

 

174 
 

 Journal of Advances and Scholarly Researches in Allied Education 
Vol. 17, Issue No. 1, April-2020, ISSN 2230-7540 

 

Some General Relativistic Fluid Spheres 

 

Ashok Kumar Ray1* Dr. R. N. Roy2 

1
 Research Scholar, Assistant Professor, Department of Mathematics, P.R. College, Sonpur, Saran, Bihar 

2
 Associate Professor, P.G. Department of Mathematics, Jai Prakash University, Chapra, Saran, Bihar 

Abstract – The present paper provides new solution of Einstein‟s field equations for the interior Metric of a 
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physical parameters have been found and discussed. 
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1. INTRODUCTION: 

Many research workers have shown their interest on 
finding solutions of Einstein‘s field equations in 
general relativity. Perfect fluid spheres with 
homogeneous density and isotropic pressure in 
general relativity were considered by Schwarzschild 
[16] and the solutions of relativistic field equation 
were obtained. Tolman [18] developed method for 
tracing Einstein‘s field equation applied to static fluid 
spheres in such a manner as to provide explicit 
solutions in terms of known analytic functions. A 
number of new solutions were thus obtained and the 
properties of three of them were examined in detail. 
These solutions were used by Open-heimer and 
Volkoff [14] in the study of massive neutron cores. 
Krori [5] obtained exact solutions for some dense 
massive spheres and pointed out their astrophysical 
implications. Krori [5] applied the solution V of 
Tolman in the case stellar structures with a variable-
density core having finite density and pressure at the 
centre of the body. The characteristics of Tolman‘s 
solution VI with reference to constant density as well 
as variable density cores and their astrophysical 
implications have also been discussed. Mehra, 
Vaidya and Kushwaha [11] have obtained a general 
solution of the field equations for a complete sphere 
having a number of shells, one above the other, of 
different densities. 

Durgapal and Gehlot [1] have obtained exact internal 
solutions for dense massive stars in which the 
control pressure and density are infinitely large. 
Durgapal and Gehlot [2], [3] have obtained exact 
solution for a massive sphere with two different 
density distributions. The density being minimum at 
the surface varies as the square of the distance from 
the centre. The distribution has a core of constant 
density and radius. 

As a matter of fact solutions of Einstein‘s field 
equations in general relativity is much discussed 
problem. Solutions giving an isotropic and 
homogeneous distribution of matter in space have 
since long been known in differential geometry. 
Such solutions have special interest in general 
relativity as they afford suitable models of a 
universe which is assumed to consist of isotropic 
and homogeneous matter. Such a model was 
considered by Friendmann and Lemaitre in their 
solutions for the expanding universe. The well-
known Schwarzschild interior solution [16] 
representing the field of a fluid sphere of constant 
density, was discovered long ago and still holds a 
prominent place in theory of relativity. Later on  
Whittaker [19] pointed  out that the  effective  mass  

density governing gravitational  attraction  is  not 


 

but 
2

3p

c

 
  

  whittaker [20] solved the Einstein‘s field 
equations for the interior metric of a fluid sphere 
assuming effective mass density to be a constant. 
However a more general case will involve a form of 
this quantity varying with redial co-ordinate. Krori et 
al. [6,7] found an internal solution for a spherically 

symmetric  matter  distribution  with 


c2 + 3p = f 
(r). Further on Paul and Guha Thakurta [15] studied 
the same problem taking cosmological constant 
into account. 

A method for treating Einstein‘s field equations 
applied to static sphere of fluid to provide solutions 
in terms of known analytic functions was developed 
by Tolman [18]. Leibovitz [9], [10] has extensively 
discussed the static and non-static solutions of 
Einstein‘s field equations for the spherically 
symmetric distributions. The significance of the 
Weyl conformed curvature tensor in relation to 
distribution of spherical symmetry, has been 
investigated by Narlikar and Singh [13] 



 

 

Ashok Kumar Ray1* Dr. R. N. Roy2 

w
w

w
.i
g

n
it

e
d

.i
n

 

175 
 

 Some General Relativistic Fluid Spheres 

Hargreaves [4] has discussed the stability of a static 
spherically symmetric fluid spheres, consisting of a 
core of ideal  gas and radiation, in which the ratio of 
the gas pressure to the total pressure is a small 
constant, and an envelope consisting of an adiabatic  
gas. Yadav  and  Saini  [21]  have  obtained  an 
exact, static spherically symmetric solution of 
Einstein‘s field equation for the perfect fluid with p = 
p while Leon [8] has presented two new exact 
analytical solutions to Einstein‘s field equations 
representing static fluid spheres with an isotropic 
pressure. Some other workers in this field are 
steward [17] and Yadav et. at [22]. 

Here in this paper we have presented a new solution 
of the Einstein‘s field equation for the interior metric 
of a fluid sphere taking cosmological constant in the 
solution. We have assumed that the metric 
coefficient b = αr2 where -b = g44‘ so that the 
effective mass density varies with radial co-ordinate. 

We have also considered the case when 
cosmological term λ is zero and b = Ar2 + B. 

2.  THE FIELD EQUATIONS AND THEIR 
SOLUTIONS 

We assume a metric of the form 

 

The equations to be satisfied are them (Moller [12]) 

 

 

 

Where λ is the cosmological constant and prime 
denotes differentiation with respect to r.  Equations 
(2.2) -  (2.4) are three equations in four unknowns a, 
b, p and p. Thus the system is inderminate. For 
complete determinacy of this system we should have 
one more relation. For this, we assume following 
cases. 

Case – I 

 

Where α is an arbitrary constant 

Now from equations (2.5) and (2.3), We have 

 

Adding equations (2.6) and (2.4) we get 

 

Equations (2.5) and (2.7) together give 

 

Equations (2.6) on differentiation yields 

 

Which by use of (2.8) and (2.2) reduces to 

 

Which on integration further reduce to 

 

From equations (2.6) and (2.11) pressure is given 
by 

 

and from equations (2.4) and (2.11) 

 

and from (2.12) and (2.13) 

 

Clearly 
2( c 3p)   is a variable quantity depending 

upon the radial co-ordinate r. It can be seen from 
equations (2.12) that p increases as r decreases. 
It becomes zero for r1 given by 
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Clearly  3   is a negative quantity. 

At the boundary the interior solution passes, over to 
the exterior solution so that we have (Moller [12]). 

 

From equations (2.5), (2.11) and (2.16) we have the 
following values for m 

 

 

From (2.17) and (2.18) we have 

 

Thus the value of 


 is fixed by the values of α and 
r1. 

Case – II: Here we assume cosmological term λ = 0 
and 

 

where A and B are constants. Adding equations (2.3) 
and (2.4) we get 

 

The equation (2.21) can be rewritten as 

 

Since 

 

From equations (2.20) and (2.2) using equation 
(2.22) we get 

 

which on integration leads to 

 

where C is the constant of integration. From equation 
(2.3) using equation (2.20) and (2.23) we get 

 

Hence from equation (2.23) using the values of a and 
b from (2.24) and (2.20) respectively we get 

 

And from equation (2.4) using equation (2.24) we get 

 

From equation (2.25) and (2.26) we get 
2c 2p   as a 

variable quantity. 

 

Since at the boundary p = 0 we get from the 
equation (2.25) 

 

Where r1 is the boundary. To make r1 real c should 

be negative and A 16 | c |  . with the above 
conditions pc

2
, p and pc

2
+ 3p are all positive and 

their values at the centre of the sphere are 

 

 

 

Hence from above it shows that 
2

0 0c ,p  and 
2

0 0c 3p   are all positive. Therefore from equation 
(2.29) and (2.30), since c is negative 
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Now for the exterior solution we know (Moller [12]). 

 

As a(r) and b(r) must be continuous and ab = 1 for 
the exterior solution, we have using equation (2.20) 
and (2.24) 

 

From which we get 

 

This value of C makes r1 real and the condition  
A 16 | C | B   is satisfied, provided1 B 0.    Hence 
from equation (2.33) and (2.34) 

 

It shows that m is positive since C is negative. It can 
be also shown that equation (2.36) can be expressed 
in terms of pressure and density as follows: 

 

Where b0 is the value of b at r = 0 

3. REMARK 

Yet in case I our solution is not regular at the centre 
(r=0), the density and pressure vary with radial co-
ordinate in a much simpler manner then in the 
solutions due to whittaker [20], Krori et at. [6, 7] and 
Paul and Guha Thakurta [15]. 

In case II our solution is regular at the centre r = 0 
and also pressure, density both are positive. 
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