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Abstract – This paper is basically concerned with finding the solution using formulae, existence and 
uniqueness of solutions of impulsive fractional differential equations with ABC (Atangana-Baleanu-
Caputo) fractional derivative with non-singular Mittag-Leffler kernel. Our examination depends on non-
singular fractional analysis and few techniques of fixed-point theory. An example is illustrated to clarify 
the proved concepts. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

INTRODUCTION 

Fractional calculus has taken a notable sector of 
inspection on real life problems with its tremendous 
application in science and engineering. It has been 
extended because of global character of the 
fractional operator, which relates the reminiscence 
and it authorizes to learn an adjacent look at the vital 
behavior and inherited things of the relevant 
phenomena. We referred the monographs [1-3] to 
know about current development in such field. 

The purpose of fractional derivative with power law 
base in the sense of Riemann Liouville was 
established. A modern fractional derivative is added 
has suggested by Caputo-Fabrizio [4] depending on 
the augmented kernel. To through away troubles 
related to Caputo-Fabrizio‘s, a new change in 
version of a fractional derivative with non-singular 
and global kernel of Mittag-Leffler function (MLF) 
have been introduced by Atangana and Baleanu 
(AB) in [5]. Generalization of MLF is noted and used 
as non-singular and global kernel in later on 
extension but it does not assure singularity. Also, the 
ABC derivatives comes up with a magnificent 
memory description [6-9]. Recently the authors [10-
14] deliberated inquisitive and numerical solution for 
few fractional models by means of AB fractional 
derivative with global trouble-free kernel. 

We display the nature and uniqueness of solutions to 
impulsive fractional differential equations with initial 
and global conditions in this article. 

 

and 

 

Where [ ]0 1, ABC aa D    refers the Atangana-Baleanu-
Caputo (ABC) fractional derivative of order 

, :a h R R   is a given non-discontinuous function. 

Moreover,   0, 0 0h    and also disappears at impulse 

points 0, 1,2,...., , : , 1,2,...., , ,m m mm n I R R m n R       
satisfy 

 

Represents the right and left limits of     at m   

and  : ,f PC R R   is given function. 

Also   m   if  1 0, , 0,1,2, , , , , , & 0.m m m       By 
reference from Theorem 3.11 of [24], we should 

have standard condition   0, 0 0h  
 to fix the 

starting data for solution. By the previous referred 
articles, there are only few articles on Cauchy 
problems for ABC impulsive fractional differential 
equations. 

The main part of this paper is to derive formula of 
solutions for types of impulsive fractional 
differential equations with ABC fractional operators. 
Already we proved existence and uniqueness 
theorem theorems by few fixed-point theorems of 
Banach space, Kransosekliskii, Schader and 
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Schafer for suggested problems taken in previous 
papers [13-31]. We grasped that the equality 

       0, 0 , 0 1,2,.....,m mh h m n       is mandatory to 
assure a unique solution. 

This paper is divided as follows: 

Section 1 deals with survey of literature. 

Section 2 comprises basic definitions, fundamental 
lemmas and theorems. 

The suggested formulae for taken problem is 
established in section 3. 

The existence of unique solution for Cauchy problem 
and global Cauchy problem are acquired in 4

th
 and 

5
th
 section. 

Finally, examples are stated and proved to the 
affirmation of our results. 

2. PRELIMINARIES 

Consider the space 

 

The space  ,PC R
 is a complete normed linear 

space with the norm  max .
PC 

  



 Let 

   1 20, and : \ , ,....., .mS         

Definition 2.1. [5,27]  Let  0,1a  and  1 , .H       
Then the left AB Caputo and AB Riemann-Liouville 

fractional derivatives of order a  for a function 


 are 
defined by 

 

and 

 

respectively, where  M a  is a function with 

normalization convinces the results    0 1 1 and aM M E   is 
called the MLF defined by 

 

Definition 2.2. [5,27] Let  0,1a  and  1 , .L   . Then 

the left AB fractional integral of order a  for a function 


 is denoted by 

 

Definition 2.3. [5] The ABC fractional derivative with 
its Laplace transformation is defined by 

 

where L is the Laplace transform initiating from α 
defined by 

 

Definition 2.4. [29]  Let X be a complete normed 

linear space. Then the operator : X X   is a 

contraction if 1 2 1 2x x x x     for all 

1 2, , 0 1.x x X     

Definition 2.5. A function  ,PC R    is a solution 

of (1.1) if   convinces the equation 

      ,ABC aD h

    

 on   and conditions 

 

To prove the main concept of this paper, we 
need to remember the following lemmas and 
theorems which is proved already. 

Lemma 2.1. [28] Let  , , ,H       such that 
the ABC fractional derivative exists. Then we 

have    ABC a AB aD I       and      AB a ABC aI D          for 

0 1.a   Also,   0ABC aD     if     is a constant. 

Lemma 2.2. [24,28]  For  0,1 ,a  the solution of 
the following problem  

 

is given by 

 

Theorem 2.1.  [29]  Let X be a complete 
normed linear space and A be a non-empty 

closed subset of X. If : A A   is a contraction, 

then there exists a unique fixed point of .  

Theorem 2.2. [29]  Let X be a complete 
normed linear space and : X X   be a non-
discontinuous and compact mapping (completely 
continuous). Suppose 

  : for 0,1T y X y y     
 be a bounded set. 

Then   has at least one fixed point in X. 
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Theorem 2.3. [29]  Let B be a non-empty, 
convex, closed subset of a complete normed linear 

space X  and let 1 2,o o  be two operators, such that 

(i) 1 2 ,o a o b B a b B   
 

(ii) 1o
 is compact and continuous 

(iii) 2o
 is a contraction mapping. Then there exist 

B  such that 1 2 .o o     

3. FORMULAE DERIVATION FOR 
REPRESENTED PROBLEM 

Theorem 3.1. Let  0,1a  and let :v R  be 

continuous with  0 0v   and also disappears at hasty 

points m , for 1,2,...., .m n  A function  ,PC R    is a 
solution of the fractional integral equation 

 

If and only if 


 is a solution of the impulsive ABC-
fractional FDE 

 

where  

 

Proof. By lemma 2.1, we can prove this again by 
assuming   satisfies (3.6)-(3.8). 

If  10, , 
 then        , 0.ABC aD v


    

 

Using lemma (2.1), we have 

 

This implies 

 

By impulse      1 1 1 1 ,I        
 we get 

 

If  1 2, ,    then v  vanishes at 1  implies 

 

 

By impulse      2 2 2 2 ,I          we get 

 

If  2 3, ,    then v  vanishes at 2  implies 

 

This implies that 

 

By impulse      3 3 3 3 ,I          we get 

 

Proceeding like this, we get the general expression 
as given below: 

 

For    1, ,m m m       and hence we get the solution 
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Hence (2.5) is satisfied. 

Conversely assume that 


 satisfies the equation 
(1.1). 

If  10,  , then     00 0; 0 .v     By the concept that 
ABC aD  

is the left inverse of 
AB aI . By using lemma 2.1, we 

get      0 1, 0, .ABC aD v       

If  1, , 1,2,.....,m m m n      and by the fact that     0,ABC aD

    

where     is a constant function, we obtain 
      ,ABC aD v

    for each  1, , 1,2,....., .m m m n      

Hence        , 1, 2,....., .m m m mI m n           

4. CAUCHY PROBLEM 

We need the following hypothesis to prove our 
results, 

(A1) 

   , , , for each , , and a constant 0.h hh h L R L               

 

(A2) The function :mI R R  are continuous and there 

exist a constant 0JL   such that 

    *, 1,2,...., & , .m m JJ J L m n R          
 

(A3) There exist  ,C R   such that    ,h    
, for 

each  , .R    

(A4) There exist 0N   such that   , 1, 2,...., , .mI N m n R   
 

Now let us prove main results. 

Theorem 4.1. 

Assume :h R R   is continuous. If (A1) and 
(A2) hold with 

 

then the impulsive ABC – fractional FDE (1.1) has a 

solution which is unique on 
,
 where 

 

Proof: By lemma 2.3, define the mapping 

   : , ,B PC R PC R  
 by 

 

Let 

 

Let 
 max ,0 .hh





 

 From (A1), we get 

 

To prove B  has a fixed point, for that we need to 

show that .l lB A A  For ,lA   we have 

 

 

Thus B maps lA  into itself. 

Next, we have to show that B is a contraction on 
 ,PC R . Let  *, ,PC R     and . . 

Then we get  
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The inequality (4.9) shows that B is contraction on 
 , .PC R  It is proved that the impulsive fractional 

differential equation with ABC (1.1) has a solution 
which is unique. 

Theorem 4.2. Suppose :h R R   is continuous and 
assume (A3) and (A4) hold. Then there exists at 
least one solution for fractional differential equations 
with ABC fractional derivative and impulse condition 

on .  

Step 1: To show that    : , ,B PC R PC R    is compact. 

Since h  and mI  are continuous, we have to verify that 

B  is continuous. 

Let   
1 1, :l PC

A PC R l      be a set(ball) with 
1 0 0 1l nN     . 

Where 
 0 sup



  



 and   is given by (4.10). For lA   

and  , we have 

 

Hence  1B Al  is uniformly bounded. 

Next, we have to prove B  maps bounded sets into 

equicontinuous set of  ,PC R . 

By (A3), Let us fix  
 

1

0
,

sup , .
lA

h h
 

 




 Now 

 

 

As    1 2 2 1, 0,B B       
 that is  

1l
B A  relatively 

compact for .  

The operator B  is compact on 1l
A  by Arzela Ascoli 

theorem. 

Step 2:  To prove that the set     , : for some 0,1T PC R B         is 
bounded. 

Let .T   Then B   for some  0,1  . Hence for ,   
we obtain 

 

For every ,   we get 0 0 : .
PC

nN R       Hence T 
is bounded. 

That is B  has a fixed point which is a solution of 
ABC-fractional differential equation (1.1) 

5. NON-LOCAL CAUCHY PROBLEM 
OF ABC-FDE: 

Finally, we have to prove existence of solution for 
the impulsive FDE with ABC fractional derivative. 

Let f  satisfying the following condition 

(A5)  : ,f PC R R   is continuous and there exists a 

constant 0 1fL   such that 

   * *

ff f L     
 for all  *, , .PC R     

Theorem 5.1. Suppose :g R R   is continuous 
and assume (A1), (A2) and (A5) hold. If 

 

where   is given by (4.10), then ABC-FDE with 

impulse condition has a unique solution on .  

Proof: Define the non-linear mapping 
   * : , ,B PC R PC R    as follows 
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Then 
*B  has a fixed point if and only if the ABC-FDE 

with impulse condition (1.2) has a solution. Choose  

 

From hypothesis (A5), it is simple to verify that 
* *

* ,
l l

B A A  

where  

 

Next, we have to prove that 
*B  is a contraction. 

Let  *, ,PC R     and ,   then we have 

 

 

The inequality (5.12) proves that 
*B  is contraction on 

 ,PC R . Then the ABC-FDE with impulse condition 
has a unique solution. 

Theorem 5.2. Suppose :h R R   is continuous 
and let (A1) to (A5) hold. If 

 

Then the global ABC-FDE (1.2) with impulse 
condition has a solution on given domain. 

Proof: Let the operator    * : , ,B PC R PC R    defined by 
(5.13). 

Define the operator 
* *

1 2&B B  on lA
 as 

 

where 
* * *

1 2 .B B B   Let the ball   0 0, :
PC

Al PC R l      and 

 

For 1 2 0, ,Al    we obtain 
* * * *

1 1 2 2 1 1 2 2B B B B       

 

 

 

Thus 
* *

1 1 2 2 0B B Al   . For any  1 2& , ,PC R     , we 
have 

 

From (5.14), 
*

1B  is a contraction mapping. 

Now let us show that 
*

2B  is continuous and 

compact. h  is continuous  
*

2B  is continuous. 

Also 
*

2B  is uniformly bounded on 0Al  because for 
0 &Al    we get 

 

 

Now the operator 
*

2B  is compactness on 0,Al  since 
*

2 .B B  

Hence, the global ABC-FDE with impulse 

condition possesses a solution .  

6. ILLUSTRATION 

For  0,1a , consider the following impulsive ABC-
FDE 



 

 

Dr. R. Prahalatha1* Dr. M. M. Shanmugapriya2 

w
w

w
.i
g

n
it

e
d

.i
n

 

227 

 

 Journal of Advances and Scholarly Researches in Allied Education 
Vol. 17, Issue No. 1, April-2020, ISSN 2230-7540 

 

 

 

Clearly      0, 0.5, 0.5 0.h h     Let 
and , .ThenR      

 

Also, hypothesis (A1) and (A2) hold with  

 

Also verified that the condition (4.9) holds with  

 

Thus, we get  

 

By theorem 4.1, the problem (6.15) has a one-of-a-
kind approach [0,1]. Also it is noted that for each 

R   and  0,1  , we have    , 0.5
9

h


     and   0.1.mI    

Hence, condition (A3) is verified with  

 

Thus, all conditions of theorem (4.2) are satisfied. 
Hence theorem (4.2) implies that the given problem 

has at least one solution on  0,1 . 

7. CONCLUSION 

In this paper, we'll look at, we have been derived the 
formulae for solution for the Mittag – ABC for an 
impulse state fractional differential equation. Also, we 
established existence and uniqueness for that 
problem. Hence, the prevailed results take part a 
remarkable role in expanding fractional calculus 
principle analysis. 
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