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Abstract – Graph Theory on Algebra is a newly emerging discipline in mathematics that has significant 
applications. Newline: Newline In recent decades, newline complex graphical theory of algebraic 
structures is being increasingly used in algebraic techniques. A newline with the interplay between 
algebra and the theory of graphics is a fascinating topic. Algebraic tools can be used to provide 
surprising newline and fine evidence of theoretical graphic facts, and numerous newline graphs are 
linked to interesting algebraic objects. The literature itself has grown dramatically in the field of algebraic 
graph theory. New line Thousands of research papers was literally published. There are currently several 
newline books dealing with this topic. Algebraic graph theory is a branch of newline mathematics which 
is used for graphic problem by algebraic methods. This contrasts with the combined or algorithmic 
approaches of geometry and newline. The newline graphic theory has three main branches: the use of 
linear algebra, the use of group theory and the investigation of newline graphic invariants. Newline: The 
first branch of the graphic theory of algebraics involves a newline study of graphs with linear algebra. It 
studies the adjacence matrix or the newline in particular A graph's laplacian matrix (this part of algebraic 
graph theory is also called spectral graph newline theory). Newline: The second branch of algebraic 
graph theory involves the investigation of graphs into group theory in connection with newline, 
especially auto-orophytic groups and geometric group theory. This new feature this category covers the 
dissertation. Newline: Finally, the third branch of algebraic graph theory deals with algebraic 
characteristics of newline graph invariants, and particularly the chromatic polynomials of the polynomial 
and the nodes of newlines. The newline number counts its proper peak colours, for example, in the 
chromatic polynomial of a diagram. 

Keywords – Development, Theory on Algebra, Graph Theory, Mathematics, Algebraic Techniques, 
Geometric Group Theory 
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INTRODUCTION 

The literature of algebraic graph theory itself has 
grown enormously. Literally thousands of research 
papers have appeared. Several books now cover 
aspects of this topic. Norman Biggs is a normal book 
in this area for introduction to algebraic graph theory 
[1993] Biggs. The Godsil and Royle books [2001] 
and Cvetkovic and al. [1980] also contain huge 
amounts of data. Algebraic graphs are graphs made 
of algebraic structures, for example groups and 
rings. The newly developed algebraic diagrams 
include Order Prime Graph Rajendra et al. [2016], 
Coprime graph Ma et al. [2014]. Noncyclic Graph 
Abdollahi and Hassanabadi [2007]. Colored 
commutative rings Lucido [1999] Zero-dividing 
charts, regular rings by Neumann, and boolean 
algebras Beck (1988) Anderson et al. [2003], The 
Cyclic Graph of a Finite group, Non-commuting 
Graph of a Group of Abdollahi et al. Ma et al. [2013], 
Finite Abelian Groups Zelinka and Liberec 
intersection chart [1975], Cayley Graph and Center 

graph subgroup, Complementary chart. All these 
graphs are made up of groups and rings whose 
vertices are the group and ring elements and the 
rings they, and certain properties of the pair of 
elements have been taken into account. This 
approach to algebraic graphics simplifies the 
complex stuff. This is a more complicated group 
structure based on binary functions, which is 
converted into relatively simple graphs based on 
the element relationships. The group properties are 
discussed through the charts when the graphs are 
made from groups. This approach also focuses on 
how much information you can obtain from the built 
graphs about the original group without losing a 
great deal of data when converting. 

A well-known algebraic graph is the Cayley graph. 
The Cayley Graph concept plays a key role in 
addressing certain optimization problems, in 
particular routing problems in parallel computer 
interconnection networks. In the development of 
the modern science and engineering processing 
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and supercomputing continue to have a significant 
impact. In facilitating communication between 
processors in a computer system, the network of 
processors plays a vital role. The Rings, Torso and 
Hypercubes are among the popular connection 
systems. Their popularity derives from the availability 
of these architectures for commercial applications. 
These three graph families – ring, torus and 
hybercube – share the common characteristic of 
Cayley's graphic design. Cayley graphs have 
modeled many important network problems. Given 
the property of vertex transitivity, Cayley graphs 
allow routing and communication systems to be 
implemented at each network node. The 
identification of ideal dominant sets in Cayley graphs 
is one of the key problems regarding routing 
problems. It helps to identify optimum substructures 
so that communication between processors can be 
facilitated. 

Cayley graph is a discrete structure created out of 
groups, more specifically from a finite group G and 

its generating set Ω. A non-empty subset Ω ⊂ G is 
called a generating set for G, denoted by G =< Ω >, if 
every element of G can be expressed as a product of 
elements in Ω. For a generating set Ω of G, we 

assume that: C1: The identity element e /∈ Ω and 

C2: If a ∈ Ω, then a −1 ∈ Ω. Given the pair (G, Ω), 
such that G =< Ω > and Ω satisfies the two 
conditions C1 and C2, define a Cayley graph Γ = (V, 
E) corresponding to (G, Ω), as V (Γ) = G and E(Γ) = 

{(x, y)a|x, y ∈ G, a ∈ Ω and y = xa} and it is denoted 
by Cay(G, Ω). When G = Zn =< Ω >, it is called as 
circulant graph and denoted by Cir(n, Ω). 

In the last three decades, the study of algebraic 
structures using the graphic properties has become 
an interesting research topic that leads to many 
fascinating results and questions. There are many 
papers on the algebraic properties of ring or group by 
assigning a graph to the ring or group. In 
Sattanathan and Kala[2009], the concept of the order 
primary graph has been introduced. Relative primary 
integrals play an important role, especially in 
algebras and numbers theory, in various branches of 
mathematics. The primary order graph is a graph 
built from groups that take into account the relative 
primary property of its elements. The order prime 
graph of a group Γ is a graph with V (op(Γ))= Γ and 
two vertices a and b are adjacent in order prime 
graph of a group if and only if (o(a), o(b))= 1. 

Complementary concept of subgroup Chelvam and 
Sattanathan [2010] introduced the Cayley graph. 
That all is a group, and all are sub-groups — all of 
which then are known as a cayley graph (all of which 
is − all of which are H). Another concept is the center 
graph of a group where a graph is assigned to the 
group and the algebraic properties are investigated 
using a corresponding graph. In P. Balakrishnan 
[2011] and Balakrishnan et al. [2011a], the concept 
of the center graph of a group is presented. It is a 
diagram with vertices that adjacent to group 

elements and two distinct vertices only when their 
product is in the middle of the group. 

Definition 1. The cyclic subgroup graph Γz(G) for a 
finite group G is a simple undirected graph in which 
the cyclic subgroups are vertices and two distinct 
subgroups are adjacent if one of them is a subset of 
the other. Few examples for cyclic subgroup graph 
are discussed in the following paragraphs. Consider 

the finite group Z2 ⊕ Z2. The cyclic subgroups of this 

group Z2 ⊕ Z2 are 

 

From the set relations  is a subset of all other 
cyclic groups and other three cyclic groups 

  are not comparable. So v1 is 
adjacent to v2, v3 and v4 as shown in figure 1 

 

Figure 1: The Cyclic Subgroup Graph of Z2 ⊕ 
Z2 

The Figure 2 illustrates the cyclic subgroup graph 

of Z3 ⊕ Z3. 

 

It‘s cyclic subgroups are as follows 
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For simplicity of notation take 

 

In this example the subgroup generated by (0, 0) is a 
subset of every other subgroups. Therefore the 
subgroup generated by (0, 0) is adjacent with the 
subgroups generated by (0, 1), (1, 0), (1, 1), (1, 2). 

So v5 is adjacent with v1, v2, v3, v4.  

Then from the set theory relations we get the 
following graph shown in figure 2 as the cyclic 
subgroup graph of Z3 ⊕ Z3. 

 

Figure 2: The Cyclic Subgroup Graph of Z3 ⊕ Z3 

In this chapter few parameters in cyclic subgroup 
graph of a finite group such as independence 
number Allan and Lasker [1978], chromatic number, 
matching number, restrained domination number, 
restrained triple connected domination number, 
strong domination number, strong triple connected 
domination number, 2-domination number, triple 
connected 2-domination number, perfect domination 
number and 2-connected domination number are 
studied. Also the independence number of a power 
graph Chakrabarty et al. [2009] Cameron and Ghosh 
[2011] and the independence number of cyclic 
subgroup graph are found to be same. 

PERCEPTUAL LEVEL IN THE HISTORY OF 
ALGEBRA  

Perceptional representation related with pre-
conscious and conscious levels of thinking are taken 
into consideration in this study. The first level could 
be considered as having both a pre-conscious and a 
conscious part to it. Vision gives the idea of chief 
sensory apparatus in mathematics. As the senses 
analyses the discrete signals going into the brain, the 

brain in turn integrates or synthesises the sensations 
into percepts or unified images of the images 
acquired. Consequently one unified percept (for 
example, a triangle) is consciously seen. Perception 
can define as an act of identification or 
categorisation, that is, an event in which a simple or 
complex array is identified as a member of some 
meaningful category on the basis of characteristics it 
shares with other members of that category. These 
concepts or conceptual categories represent the 
common characteristics of objects be in the first level 
could be considered as having both a pre-conscious 
and a conscious part to it. Vision gives the idea of 
chief sensory apparatus in mathematics. As the 
senses analyses the discrete signals going into the 
brain, the brain in turn integrates or synthesises the 
sensations into percepts or unified images of the 
images acquired. Consequently one unified percept 
(for example, a triangle) is consciously seen. 
Perception can define as an act of identification or 
categorisation, that is, an event in which a simple 
or complex array is identified as a member of some 
meaningful category on the basis of characteristics 
it shares with other members of that category. The 
simplest concepts, such as the concept of a 
triangle, lie very close to a percept. However, the 
more complex ones, such as a torsion-free abelian 
group, are not. This suggests the helical idea of 
concept formation. As one proceeds up the helical, 
more and more complex concepts are 
encountered. Concepts lie between percepts and 
linguistic representations or abstractions. The latter 
involves axioms and definitions. These in turn lead 
to theorems at different stages of the helical. The 
lack of concept acquisition linking percepts to 
abstractions can often lead to problems of 
understanding. Moving from level 1 to 2 and level 2 
to 3 involves moving from iconic to symbolic, 
concrete to abstract, picture-like to linguistic or 
simple to complex. Concepts form the link between 
iconic representations or percepts and linguistic 
representations or abstractions. The rise from level 
2 to level 3 is important because while a student is 
still at the level of images or intuitive notions, 
he/she does not consult definitions which are 
necessary for further advancement up the helical. 
The word ―percept‖ means the product of being 
made aware of something by one of the senses 
and ―concept‖ means an ―idea of class of objects; 
general notion‖. The noun ―abstraction‖ means 
―withdrawal‖ and is a derivation of the word 
―abstract‖ meaning an ―essence‖ or ―summary‖. In 
Latin ―ab‖ means ―from‖ and ―tracto‖ means ―I haul‖ 
and so literally abstraction means what has been 
hauled, pulled or drawn out of something. Since 
this gives a concise description of activities 
associated with the third level, the terms percepts, 
concepts and abstractions are being used here to 
describe the three levels of the helical. 

For sublevels of first level of thought, we may take 
the learning of complete mathematical induction as 
an illustration. Initially, at the perceptual level, 
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students should be provided with examples which 
compel them to invent complete induction. As a 
result of these examples, they come to recognise the 
common principle. The examples provided should be 
non-trivial or at least non-trivial looking types.  

For example 

 

It would serve as an example of the initial perceptual 
level. Further examples would be suitable at the 
conceptual level. Binomial coefficients and the 
binomial theorem would be examples suggesting 
structure at the abstract level. However, textbooks 
often present the binomial theorem as a 
consequence of complete induction which forms a 
―vicious circle‖ in mathematical invention21. 
Furthermore, to deduce complete induction from 
Peano‘s axioms and then apply it to various 
examples would be the decisive experience that 
leads to this principle. 

Conceptual level as an attribute of mathematical 
concepts  

Representations and symbol systems are 
fundamental to mathematics as a discipline since 
mathematics is "inherently representational in its 
intentions and methods". Vergnaud (1997) 
suggested viewing representation as an attribute of 
mathematical concepts, which are defined by three 
variables:  

i) The situation that makes the concept useful 
and meaningful,  

ii) The operation that can be used to deal with 
the situation, and  

iii) The set of symbolic, linguistic, and graphic 
representation that can be used to represent 
situations and procedures. 

Several ideas related to the concept of 
representation are pertinent to this research. The first 
and the foremost is that external systems of 
representation and internal systems of 
representation and their interaction are essential to 
mathematics teaching and learning. Internal 
representations are usually associated with mental 
images individuals create in their minds. Bruner 
(1966) proposed to distinguish three different modes 
of mental representation  

i) The sensory- motor (physical action upon 
objects),  

ii) The iconic (creating mental images) and 

iii) The symbolic (mathematical language and 
symbols). 

Estes (1996) posited that internal representation and 
categorization are the attributes of high-order human 
cognitive processes; both involve abstraction to 
represent the entity of the object of communication. 
Matsuka and Sakamoto (2007) suggested that "By 
compressing the vast amount of available 
information, a cognitive process called categorization 
allows us to process, understand, and communicate 
complex thoughts and ideas by efficiently utilizing 
salient and relevant information while ignoring other 
types". Pape and Tchoshanov (2001) described 
mathematics representation as an internal 
abstraction of mathematical ideas or cognitive 
schemata, that according to Hiebert and Carpenter 
(1992) the learner constructs to establish internal 
mental network or representational system. Thus, 
one can assert that internal representation, 
categorization and abstraction are closely related 
mental constructs. External representations are 
usually associated with the "knowledge and 
structure in the environment, as physical 
symbols, objects, or dimensions" as well as 
"external rules, constraints, or relations 
embedded in physical configurations". Goldin 
and Shteingold (2001) suggested that an external 
representation "is typically a sign or a 
configuration or signs, characters, or objects" 
and that external representation can symbolize 
"something other than itself. Most of the external 
representations in mathematics are conventional; 
they are objectively determined, defined and 
accepted. 

THE ABSTRACT LEVEL IN THE HISTORY 
OF ALGEBRA  

The term 'abstraction' has been used to describe 
both the cognitive process of isolating, or 
'abstracting' a common feature or relationship 
observed in a number of things, and the product 
of such a process. The distinction in meanings is 
usually ensured by the situated context in which 
the word 'abstraction' is used. Czemecka (2006) 
uses the term abstraction to describe the method 
for constructing the object of intellectual cognition 
in general. Abstraction as a mental action 
separates a property or a characteristic of an 
object from the object to which it belongs or is 
linked to and forms a cognitive image or a 
concept (an abstraction) of the object. Thus, 
abstraction can be understood as a mental 
process that promotes the basis of thoughts that 
allow one to reason. Abstract objects are defined 
as those that lack certain features possessed by 
concrete things. The Oxford Desk Dictionary and 
Thesaurus (1997) suggests that "abstract is what 
exists in thought or in theory and not in matter or 
in practice." Turchin (1997) posits that 
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'abstractness' is a concept in which one does not 
take into account a specific value or characteristic of 
the object in consideration, but any of all possible 
values and characteristics related to the object. The 
concept of abstraction in the field of mathematics 
education research has been examined from 
different perspectives. There is an agreement that 
mathematics students are continuously involved in 
the process of abstraction because they are engaged 
in transformation of their perceptions into mental 
images by means of different representations. The 
following notions are essential to examine the 
processes of transforming prior mental images and 
developing conceptual understanding: 

i) The notion of the degree of abstraction 

ii) The notion of adaptation to abstraction and 

iii) The notion of reducing level of abstraction 

Cifarelli's (1988) proposed the levels of reflective 
abstraction to describe a college students' learning 
process while they solving algebra word problems. 
These levels include recognition, representation, 
structural abstraction, and structural awareness. At 
the highest level, structural awareness, the student is 
able to consider problem structures and operate 
upon the mas objects. Skemp (1986), Heibert and 
Lefevre (1986), and Wilensky (1991) argued that the 
degree of abstraction is a variable that depends on 
the student's prior knowledge and subjective way of 
integrating past experience with new information. If 
conceptual understanding is defined by the degree of 
abstraction, then the idea of adaptation to abstraction 
becomes critical, and the process of building 
mathematics conceptual understanding can be 
viewed as a transition between the levels of 
abstraction from lower to higher. Hazzan and Zazkis 
(2005) assert that certain types of concepts are more 
abstract than others, and that the ability to abstract is 
an important skill for a meaningful learning of 
mathematics. Hazzan (1991) posits that the growth 
in conceptual understanding is manifested by the 
increased ability to "cope with" a higher degree of 
abstraction. To describe learners' behaviors in terms 
of coping with levels of abstraction, Hazzan (1999) 
introduced a theoretical framework of reducing level 
of abstraction. It refers to situations in which students 
are unable to manipulate the concepts at the level 
presented in a given problem and therefore, they 
reduce the level of abstraction of the concepts 
involved to make these concepts mentally 
accessible. The transition between the levels of 
abstractions can be illustrated by the following 
example: during the process of counting physical 
objects one abstracts from the properties of these 
objects and uses linguistic objects or linguistic 
abstraction, i.e., words to represent the quantity of 
the physical objects. Next, one uses the number 
symbol to represent the word that in turn represents 
the quantity of the physical objects. In algebra, one 
abstracts from number symbols and uses x to 

represent all the possible numbers. The following 
levels of abstraction provide the means to view the 
process of developing conceptual understanding in 
algebra. Assume that operating on 'number words' 
which represent certain quantities of real objects is a 
first level of abstraction. Operating with 'number 
symbols' can be thought as the second level of 
abstraction, and operating on letters that‘s t and for 
'number symbols' can be viewed as the third level of 
abstraction. Thus, one can assert that abstraction in 
mathematics is an activity of integrating pieces of 
information of previously constructed mathematics 
knowledge and reorganizing them into anew 
mathematics structure or a new hierarchy. For 
example, a number line can be viewed as a set of 
one-unit segments joined together by their ends 
sequentially. It is also a visual representation of the 
one-to-one correspondence concept where each 
point on a number line corresponds to a unique 
real number and vice-versa. Thus, a single 
segment can be used to represent 1 (fixed number 
or quantity), as well as ' 1 ' can be used to 
represent a line segment with the length of one 
unit. Two segments jointed together can represent 
number 2, etc.1 unit one unit (or just 1) Two units 
(or just 2) Then the sum of two numbers ' 1 ' and'2' 
can be represented as a line segment which 
consists of three unit segments2 units Moving to 
the next level of abstraction, a single segment can 
represent a fixed quantity which is unknown then 
two segments of the same length joined together 
will represent the sum of the two fixed quantities or 
two unknowns. Then the sum of one unknown and 
two unknowns can be described as 3 unknowns. 
This example shows the transition from concrete 
(number system, pictorial aids) to abstract 
(algebraic symbols). On the other end, when the 
students are facing with the problem of collecting 
like terms (e.g., X and 2x) where x represents a 
variable, they might experience a need to reduce 
the level of abstraction and to think in numbers and 
in pictures (e.g., line segments).They can be 
encouraged to manipulate line segments and 
numbers (act upon the objects) to find the sum of x 
and 2x as the length of the integral segment and 
then translate the length of the segment into 
symbols. Any schematization has its natural 
limitations. As Raymond Nickerson (1986) noted, 
"Taxonomies are, at best, convenient ways of 
organizing ideas and should never be taken very 
seriously. The world seldom is quite as simply 
divisible into neat compartments as our penchant 
for partitioning it conceptually would suggest". 
Nevertheless, it is useful to organize ideas and use 
pictorial representations for communication 
purposes. In this connection, it is important to 
recognize that a line segment representation of a 
number or variable as any external representation 
defined by Zhang (1997), provides only certain 
information, and "stresses some aspects and hide 
others"29, thus limited in certain ways. Yet, this 
representation might be sufficient to use in the 
process of building the concept of operations with 
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unknown and variable. The need for pictorial 
representation might become obsolete as the 'object 
conception' of unknown is formed and developed to 
the degree of abstraction that (lower level) images 
are no longer needed to consciously manipulate 
letters. Learning algebra, students develop the 
mental abilities that in helder and Piaget (1958) 
cuddled formal operations. These mental abilities 
enable the student to deal with highest level of 
abstraction, i.e., algebraic symbol system. Those 
students who have not developed formal operations 
and struggle when dealing with the algebra symbol 
systems, try to 'reduce' the level of abstraction given 
by the problem (for example, to solve the equation 2x 
+ 4 =15) to the lower level on which they can 
operate, i.e., 'number symbols.' To cope with the 
problem, these students use a trial and error method 
replacing a letter (x) with numbers until they find the 
solution. Drawn from Piaget's (1970) idea that 
children first learn about an object by acting upon it 
and through interaction they eventually understand 
its nature, theories30distinguish between a process 
conception or operational conception and an object 
conception or structural conception of mathematical 
principles and notions, and agree that when a 
mathematical concept is learned, its conception as a 
process precedes its conception as an object. These 
theories also suggest that the process conception is 
less abstract than an objectonception. One may 
conclude that the process conception of a 
mathematical concept can be interpreted as being on 
a lower (reduced) level of abstraction than its 
conception as an object. When students show a 
tendency to reduce the level of abstraction and work 
on a lower level of abstraction, it might be 
hypothesized that although they demonstrate a 
certain level of process conception, they have not yet 
developed conceptual understanding. It seems 
plausible to assume that every algebra student goes 
through the process of familiarization with and 
adaptation to different levels of abstraction. It also 
seems credible to believe that students are 
familiarizing and adapting to abstraction at different 
rate. Wilensky (1991) suggested that the higher the 
rate of adaptation to abstraction the less the need for 
reducing the level of abstraction. In this sense, the 
process of adaptation to abstraction might involve 
certain behavior manifested in coping with level of 
abstraction. In other words, when students are 
unable to manipulate with the level of abstraction 
(words, numbers, symbols) presented in a given 
problem, they consciously or unconsciously reduce 
the level of abstraction of the concepts involved to 
make these concepts within the reach of their actual 
mental stage of development. The above overview of 
the ideas and assumptions about representations, 
abstraction and conceptual understanding provided 
reasonable and sufficient basis for developing the 
study that offered another perspective on the 
process of assessing algebra students' conceptual 
understanding of linear relationship with one 
unknown. 

 

CONCLUSION 

In this study algebraic graphs are constructed and 
their algebraic properties are studied in terms of 
graph theoretic parameters. The algebraic graph is 
cyclic subgroup graph which is constructed from a 
finite group. In a finite group finite numbers of 
subgroups are there. These subgroups are taken as 
vertices and are made adjacent if one of them is a 
subset of the other. For each finite group a graph is 
obtained but these graphs may not be distinct. Some 
non-isomorphic finite groups give isomorphic cyclic 
subgroup graphs. For example both Z4 and Z9 has 
K3 as cyclic subgroup graph. This cyclic subgroup 
graph is related with various parameters especially 
power graph. For power graph and cyclic subgroup 
graph constructed from a same group has their 
independent numbers are same. The problem of 
finding chromatic number of this graph for finite cyclic 
group is settled completely. For finite cyclic groups 
this graph is found to be Hamiltonian always. The 
matching number of cyclic subgroup for finite 
cyclic group is determined. Some domination 
parameters are determined from this graph. 
These domination parameters including strong 
domination, strong triple conected domination, 
perfect domination, triple connected domination, 
restrained domination, restrained triple 
connected domination, two domination, two 
connected domination, two triple connected 
domination are all determined completely for 
cyclic subgroup graph of any finite groups. There 
are lot of open problems available in this 
research area. Chromatic number, Hamiltonicity 
and matching number can all be found for other 
non-cyclic groups such as abelian, dihedral and 
symmetric groups as an extension work. Another 
algebraic graph is formed from finite group 
named as cyclic graph. In cyclic subgroup graph 
subgroups are taken as vertices but in cyclic 
graph each group elements are graph vertices 
and adjacancy is made for elements of same 
cyclic subgroup. For finite cyclic groups obtained 
cyclic graph is complete. And for non-cyclic 
groups it‘s never complete. 
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