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Abstract – Matrix functional defined over an inner-product space of square matrices are a common 
construct in applied mathematics. In most cases, the object of interest is not the matrix functional itself, 
but its derivative or gradient (if it be differentiable), and this notion is unambiguous. The Frechet 
derivative, see for e.g. and, being a linear functional readily yields the definition of the gradient via the 
Riesz Representation Theorem. However, there is a sub-class of matrix functional that frequently occurs 
in practice whose argument is a symmetric matrix. For instance, in the theory of elasticity and continuum 
thermodynamics, the stress (a second-order, symmetric tensor) is defined to be the gradient of the strain 
energy functional or Helmholtz potential with respect to the (symmetric) strain tensor while the strain is 
defined to be the gradient of the Gibbs potential with respect to the stress. Such functional and their 
gradients also occur in the analysis and control of dynamical systems, which are described by matrix 
differential equations, and maximum likelihood estimation in statistics, econometrics and machine-
learning. For this sub-class of matrix functional with symmetric arguments, there seem to be two 
approaches to define the gradient that lead to different results. 
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INTRODUCTION 

Engineers and researchers in the field of continuum 
mechanics work with the definition of the Fr´echet 
derivative over the vector space of square matrices 
and specialize it to that of the symmetric matrices 
which are a proper subspace and then the gradient 
(denoted by Gsym for convenience) is obtained as 
described earlier. However, in the other fields named 
above, the tool of choice is matrix calculus, wherein 
a different idea emerged and has now taken hold – 
that of a ―symmetric gradient‖. The root of this idea is 
the fact that while the space of square matrices in 
R

n×n 
has dimension n2, the subspace of symmetric 

matrices has a dimension of n(n + 1)/2.  

The second approach aims to explicitly take into 
account the symmetry of the matrix elements, and 
view the matrix functional as one defined on the 
vector space Rn(n+1)/2, compute its gradient in this 
space before finally reinterpreting it as a symmetric 
matrix (the ―symmetric gradient‖ Gs) in Rn×n. 
However, the two gradients computed, Gsym, Gs are 
not equal. The question raised in the title of this 
article refers to this dichotomy. A perusal of the 
literature reveals that in the two communities that 
dominantly used matrix calculus, that of statisticians 
and electrical engineers, the idea of the ―symmetric 
gradient‖ came into being at around the same time. 

Early work in 1960s such as not make any mention 
of a need for special formulae to treat the case of a 
symmetric matrix, but does note that all the matrix 
elements must me functionally independent. 
Among statisticians, Gebhardt in 1971 seems to 
have been the first to remark that the derivative 
formulae do not consider symmetry explicitly but he 
concluded that no adjustment was necessary in his 
case since the gradient obtained was already 
symmetric. Tracy and Singh in 1975 echo the same 
sentiments as Gebhardt about the need for special 
formulae. By the end of the decade, the ―symmetric 
gradient‖ makes its appearance in some form or 
the other in work of Henderson in 1979, a review 
by Nel and book by Rogers in 1980 and 

McCulloch proves the expression for ―symmetric 
gradient‖ that we quote here. By 1982, it was 
included in the authoritative and influential textbook 
by Searle. 

Today the idea is firmly entrenched as evidenced 
by the books and the notes by Minka. In the 
electrical engineering community (as represented 
by publications in IEEE), Geering [20] in 1976 
exhibited an example calculation (gradient of the 
determinant of a symmetric 2 x 2 matrix) to justify 
the definition of the ―symmetric gradient‖. We shall 
show that his reasoning was flawed, and that the 
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same flaw leads to a putative proof of the expression 
for Gs. Brewer in 1977 remarks that the formulae for 
gradient matrices in [5] can only be applied when the 
elements of the matrix are independent, which is not 
true for a symmetric matrix, and proceeds to derive 
the ―symmetric gradient‖ using the rules of matrix 
calculus for use in sensitivity analysis of optimal 
estimation systems. At present, the ―symmetric 
gradient‖ formula is also recorded in , a handy 
reference for engineers and scientists working on 
interdisciplinary topics with statistics and machine-
learning, and the formula‘s appearance in shows that 
it is no longer restricted to a particular community of 
researchers. 

Thus, both notions of the gradient are well-
established, and hence the fact that these two 
notions do not agree is a source of enormous 
confusion for researchers who straddle application 
areas, a point to which the authors can emphatically 
attest to. On the popular site Mathematics Stack 
Exchange, there are multiple questions (for example) 
related to this theme, but their answers deepen and 
misguide rather than alleviate the existing confusion. 
Depending on the context, this disagreement 
between the two notions of gradient has implications 
that range from serious to none. In the context of 
extremizing a matrix functional, such as when 
calculating a maximum likelihood estimator, both 
approaches yield the same critical point. If the 
gradient be used in an optimization routine such as 
for steepest descent, one of the gradients is clearly 
not the steepest descent direction, and that will lead 
to sub-optimal convergence. Indeed, since these two 
are the most common contexts, the discrepancy 
probably escaped scrutiny until now. However, in the 
context of mechanics, the discrepancies are a 
serious issue since gradients of matrix functional are 
used to describe physical quantities like stress and 
strain in a body. 

Problem formulation. To fix our notation, we 
introduce the following. We denote by S

n×n 
the 

subspace of all symmetric matrices in R
n×n

. The 
space R

n×n 
(and subsequently S

n×n
) is an inner 

product space with the following natural inner 
product h·,·iF. 

Definition 2.1. For two matrices A,B in R
n×n

 

hA,BiF := tr(A
T
B) 

defines an inner product and induces the Frobenius 
norm on R

n×n 
via.  

 

Corollary 2.2. We collect a few useful facts about the 
inner product defined above essential for this paper. 

1. For A symmetric, B skew-symmetric in R
n×n

, 
hA,BiF = 0 

2. If hA,HiF = 0 for any H in S
n×n

, then the 
symmetric part of A given by sym(A) := (A + 
A

T
)/2 is equal to 0 

3. For A in R
n×n 

and H in S
n×n

, hA,BiF = 
hsym(A),HiF 

Proof. See, for e.g. [31].  

Consider a real valued function φ : R
n×n 

−→ R. We 
say that φ is differentiable if its Fr´echet derivative, 
defined below, exists. 

Definition 2.3. The Fr´echet derivative of φ at A in 
R

n×n 
is the unique linear transformation Dφ(A) in R

n×n 

such that, 

 

for any H in R
n×n

. The Riesz Representation 
theorem then asserts the existence of the gradient 

∇φ(A) in R
n×n 

such that 

h∇φ(A),HiF = Dφ(A)[H] 

Note that if A is a symmetric matrix, then by the 
Fr´echet derivative defined above, the gradient 
∇φ(A) is not guaranteed to be symmetric. Also, 
observe that the dimension of S

n×n 
is m = n(n + 

1/2), hence, it is natural to identify S
n×n 

with R
m
. 

The reduced dimension along with the fact that 
Definition 2.3 doesn‘t account for the symmetric 
structure of the matrix when the argument to φ is 
a symmetric matrix served as a motivation to 
define a ―constrained gradient‖ or ―symmetric 
gradient‖ in R

n×n 
reasoned to account for the 

symmetry in S
n×n

. 

Claim 2.4. Let φ : R
n×n 

−→ R  and 
φsym be the real-valued function that is 

 the restriction of φ to S
n×n

, i.e., φ := 
φ S

n×n 
−→ R. Let G be the gradient of φ as defined 

in Definition 2.3is the linear transformation in S
n×n 

that is claimed to be the “symmetric gradient” of 
φsym and related to the gradient G as 

follows 

 

where ◦ denotes the element-wise Hadamard 
product of G(A) and the identity I. Theorem 3.7 in 
the next section will demonstrate that this claim is 
false. Before that, however, note that S

n×n 
is a 

subspace of R
n×n 

with the induced inner product in 
Definition 2.1. Thus, the derivative in Definition 2.3 
is naturally defined for all scalar functions of 
symmetric matrices. The Fr´echet Derivative of φ 
when restricted to the subspace S

n×n 
automatically 

accounts for the symmetry structure. For 
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completeness, we re-iterate the definition of Fr´echet 

derivative of φ restricted to the    

 subspace 

Sn×n. 

Definition 2.5. The Fr´echet derivative of the function 
R at A in S

n×n 
is the unique linear transformation 

Dφ(A) 

, 

for any H in S
n×n

. The Riesz Representation theorem 
then asserts the existence of the gradient Gsym(A) := 

∇φsym(A) in S
n×n 

such that 

hGsym(A),HiF = Dφ(A)[H] 

There is a natural relationship between the gradient 
in the larger space R

n×n 
and the restricted subspace 

S
n×n

. The following corollary states this relationship. 

Corollary 2.6. If G ∈ R
n×n 

be the gradient of φ : R
n×n 

−→ R, then Gsym = sym(G) is the gradient in 

 

Proof. From Definition 2.3, we know that Dφ(A)[H] = 
hG(A),HiF for any H in R

n×n
. If we restrict attention to 

H in S
n×n

, then, 

Dφ(A)[H] = hG(A),HiF = h∇φsym(A),HiF . 

This is true for any H in S
n×n

, so that by Corollary 2.2 
and uniqueness of the gradient, 

Gsym(A) = sym(G(A)) 

is the gradient in S
n×n

.  

An Illustrative Example 1. This example will 
illustrate the difference between the gradient on R

n×n 

and S
n×n

. Fix a non-symmetric matrix A in R
n×n 

and 
consider a linear functional, φ : R

n×n 
−→ R, given by 

φ(X) = tr(A
T
X) for any X in Rn×n. 

The gradient ∇φ in R
n×n 

is equal to A, as defined by 
the Fr´echet derivative Definition 2.3. However, if φ is 

restricted to S
n×n

, then observe that = sym(A) 
= (A + A

T
)/2 according to Corollary 2.6 ! 

Thus the definition of the gradient of a real-valued 
function defined on S

n×n 
in Corollary 2.6 is ensured to 

be symmetric. We will demonstrate that Claim 2.4 is 
unnecessary. In fact, the correct symmetric gradient 
is the one given by the Fr´echet derivative in 
Definition 2.5, Corollary 2.6, i.e. sym(G). To do this, 
we first illustrate through a simple example that 
G

claim
s as defined in Claim 2.4 gives an incorrect 

gradient. 

HYPERGEOMCTRIC FUNCTION WITH 
MATRIX ARGUMENT 

Hypergeometric Functions; The noncentral X
2
 , 

noncentral F ajid multiple correlation distributions, as 
found by Fisher (1928), involve Bessel and 
hypergeometric functions which can all be written as 
special cases, for particular integers p and q, of the 
generalized hypergeometric function. 

 

where the hypergeometric coefficient (a)k. is given by 

 

Exponential 

 

Binomial series 

 

Bessel (In the noncentral  distribution) 

 

Confluent (in the noncentral P distribution) 

 

Gaussian hypergeometric 

 

The corresponding multivariate distributions involve 
a generalization of this function to the case in 
which the variable x is replaced by a symmetric 
matrix S and P is a real or complex valued 
symmetric function of the latent roots of S. The 
hypergeometrie functions which appear in the 
distributions of the matrix variates are given by the 
Constantine (1963). 

DEFINITION 
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are real or complex constants and the multivariate 
hypergeometrio coefficient (a)K is given by 

 

Where, as before 

 

The latent roots distribution s involve functions of 
both population and sample roots, namely, 

DEFINITION 

 

Hypergeometric functions of product ST of symmetric 
matrices are defined as symmetric functions of the 
latent roots of ST although ST may not be a 
symmetric matrix, its latent roots are equal to the 
latent roots of S

1/2 
TS

1/2
 , T

1/2
 ST

1/2 
and TS. 

Special Cases of Generalized Hypergeometric 
Functions of Matrix Argument; 

Now special cases of the generalized 
hypergeometric function of matrix argument are: 

 

The following integrals, which are a generalization of 
Laplace and inverse laplace transforms, were used 
by Bochner (1952) to define the Bessel function and 
by Herz (1956) to define the hypergeometric 
functions 

 

Where  is the multivariate gamma function? 

And  

 

 

And  

 

The integral is taken over all matrices 

for fixed positive definite X0 and Y 
arbitrary real symmetric.  

The hypergeometric function of two variables 
follows from that of one, by an average over 0(m) 

 

The function of two variables clearly does not 
depend upon the order in which they occur, and it 
has the same properties of Laplace and inverse 
Laplace transform taken with respect to either 
variable 

 

 

The power series for the function , 
which occurs in the distribution (18) of latent roots 
with unequal covariance matrices, may not 
converge for all requisite values of S and T, but 
the integral. 

 

is well defined for al l S > 0 and T > 0 

Further integra  representations of hypergeometrie 
functions are given by Herz (1955), namely of 

1
F

1
 

as the moment generating function of the 
multivariate beta distribution. 
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and 2F1 as the laplace transform of this function 

 

The hypergeometric functions of matrix argument 
satisfy some of the Kummer relationel. Herz (1955) 
gives 

 

And 

 

And also the obvious confluences 

 

Probability Distribution with Matrix Argument; Here 
we define number of probability ' distributions of 
special functions with matrix argument. (i) The 
gamma function of matrix argument is given by 

 

then the probability distribution is given by 

 

(ii) The beta function of matrix argument is given by 

 

then the probability distribution is given by 

 

for Z > 0;  

 

(iii) The H-function of matrix argument is given 
by 

 

 

then the probability distribution is given by 

 

 

 

(iv ) We know that 

 

 

then the probability distribution is given by 

 

For  

(v ) We know that 

 

 

then the probability distribution is given by 

 

For  



 

 

Mamta Lata Chouhan1* Savita Tiwari2 

w
w

w
.i
g

n
it

e
d

.i
n

 

193 
 

 Modification in Functions of Scalar and Matrix Argument 

 

(vi) We know that 

 

 

then the probability distribution is given by 

 

For  

 

Bivariate Probability Distribution with Matrix 
Argument; 

Here we define number of probability distribution of 
special functions with matrix argument for bivariate 
variables, ( i ) We know that 

( i ) We know that 

 

 

then the bivariate probability distribution is given by 

 

For  

 

And  

 

(ii) We know that 

 

 

then the bivariate probability distribution is given by 

 

For  

 

(iii) We know that 

 

 

then the bivariate probability distribution is given 
by 

 

For 

 

(iv) We know that 

 

 

Then the bivariate probability distribution is 
given by 

 

For Z > 0; H (  ) > 0 . 

(v) We know that 
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Then the bivariate probability distribution 

 

For  

 

CONCLUSION 

In this article, we investigated the hypergeometric 
function of a matrix argument is a generalization of 
the classical hypergeometric series. It is a function 
defined by an infinite summation, which can be used 
to evaluate certain multivariate integrals. 
Hypergeometric functions of a matrix argument have 
applications in random matrix theory. For example, 
the distributions of the extreme eigenvalues of 
random matrices are often expressed in terms of the 
hypergeometric function of a matrix argument. 
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