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Abstract — Matrix functional defined over an inner-product space of square matrices are a common
construct in applied mathematics. In most cases, the object of interest is not the matrix functional itself,
but its derivative or gradient (if it be differentiable), and this notion is unambiguous. The Frechet
derivative, see for e.g. and, being a linear functional readily yields the definition of the gradient via the
Riesz Representation Theorem. However, there is a sub-class of matrix functional that frequently occurs
in practice whose argument is a symmetric matrix. For instance, in the theory of elasticity and continuum
thermodynamics, the stress (a second-order, symmetric tensor) is defined to be the gradient of the strain
energy functional or Helmholtz potential with respect to the (symmetric) strain tensor while the strain is
defined to be the gradient of the Gibbs potential with respect to the stress. Such functional and their
gradients also occur in the analysis and control of dynamical systems, which are described by matrix
differential equations, and maximum likelihood estimation in statistics, econometrics and machine-
learning. For this sub-class of matrix functional with symmetric arguments, there seem to be two

approaches to define the gradient that lead to different results.
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INTRODUCTION

Engineers and researchers in the field of continuum
mechanics work with the definition of the Fr'echet
derivative over the vector space of square matrices
and specialize it to that of the symmetric matrices
which are a proper subspace and then the gradient
(denoted by Gsym for convenience) is obtained as
described earlier. However, in the other fields named
above, the tool of choice is matrix calculus, wherein
a different idea emerged and has now taken hold —
that of a “symmetric gradient”. The root of this idea is
the fact that while the space of square matrices in
R™" has dimension n2, the subspace of symmetric
matrices has a dimension of n(n + 1)/2.

The second approach aims to explicitly take into
account the symmetry of the matrix elements, and
view the matrix functional as one defined on the
vector space Rn(n+1)/2, compute its gradient in this
space before finally reinterpreting it as a symmetric
matrix (the “symmetric gradient” Gs) in Rnxn.
However, the two gradients computed, Gsym, Gs are
not equal. The question raised in the title of this
article refers to this dichotomy. A perusal of the
literature reveals that in the two communities that
dominantly used matrix calculus, that of statisticians
and electrical engineers, the idea of the “symmetric
gradient” came into being at around the same time.

Early work in 1960s such as not make any mention
of a need for special formulae to treat the case of a
symmetric matrix, but does note that all the matrix
elements must me functionally independent.
Among statisticians, Gebhardt in 1971 seems to
have been the first to remark that the derivative
formulae do not consider symmetry explicitly but he
concluded that no adjustment was necessary in his
case since the gradient obtained was already
symmetric. Tracy and Singh in 1975 echo the same
sentiments as Gebhardt about the need for special
formulae. By the end of the decade, the “symmetric
gradient” makes its appearance in some form or
the other in work of Henderson in 1979, a review
by Nel and book by Rogers in 1980 and

McCulloch proves the expression for “symmetric
gradient” that we quote here. By 1982, it was
included in the authoritative and influential textbook
by Searle.

Today the idea is firmly entrenched as evidenced
by the books and the notes by Minka. In the
electrical engineering community (as represented
by publications in IEEE), Geering [20] in 1976
exhibited an example calculation (gradient of the
determinant of a symmetric 2 x 2 matrix) to justify
the definition of the “symmetric gradient”’. We shall
show that his reasoning was flawed, and that the
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same flaw leads to a putative proof of the expression
for Gs. Brewer in 1977 remarks that the formulae for
gradient matrices in [5] can only be applied when the
elements of the matrix are independent, which is not
true for a symmetric matrix, and proceeds to derive
the “symmetric gradient” using the rules of matrix
calculus for use in sensitivity analysis of optimal
estimation systems. At present, the “symmetric
gradient” formula is also recorded in , a handy
reference for engineers and scientists working on
interdisciplinary topics with statistics and machine-
learning, and the formula’s appearance in shows that
it is no longer restricted to a particular community of
researchers.

Thus, both notions of the gradient are well-
established, and hence the fact that these two
notions do not agree is a source of enormous
confusion for researchers who straddle application
areas, a point to which the authors can emphatically
attest to. On the popular site Mathematics Stack
Exchange, there are multiple questions (for example)
related to this theme, but their answers deepen and
misguide rather than alleviate the existing confusion.
Depending on the context, this disagreement
between the two notions of gradient has implications
that range from serious to none. In the context of
extremizing a matrix functional, such as when
calculating a maximum likelihood estimator, both
approaches yield the same critical point. If the
gradient be used in an optimization routine such as
for steepest descent, one of the gradients is clearly
not the steepest descent direction, and that will lead
to sub-optimal convergence. Indeed, since these two
are the most common contexts, the discrepancy
probably escaped scrutiny until now. However, in the
context of mechanics, the discrepancies are a
serious issue since gradients of matrix functional are
used to describe physical quantities like stress and
strain in a body.

Problem formulation. To fix our notation, we
introduce the following. We denote by S™" the
subspace of all symmetric matrices in R™™". The
space R™" (and subsequently S™") is an inner
product space with the following natural inner
product h-,-ir.

nxn

Definition 2.1. For two matrices A,Bin R
hA,Bir := tr(AB)

defines an inner product and induces the Frobenius
norm on R™" via.

/ e
IAllp = \/tr (AT 4)

Corollary 2.2. We collect a few useful facts about the
inner product defined above essential for this paper.

1. For A symmetric, B skew-symmetric in R™",
hA,Bir=0

2. If hAHie = 0 for any H in S™ then the
syrmmetric part of A given by sym(A) := (A +
A’)/2isequalto O

3. For A in R™ and H in S™ hABi =
hsym(A),Hie

Proof. See, for e.g. [31].

Consider a real valued function ¢ : R™" -— R. We
say that ¢ is differentiable if its Fr'echet derivative,
defined below, exists.

Definition 2.3. The Fr'echet derivative of ¢ at A in
R™"is the unique linear transformation Dg(A) in R™"
such that,

. GA+H)—o(A) - Dol A I”1|
lim - :
I H][=0 | H|

for any H in R™. The Riesz Representation
theorem then asserts the existence of the gradient
Vo(A) in R™"such that

hVe(A),Hir = Do(A)[H]

Note that if A is a symmetric matrix, then by the
Fr'echet derivative defined above, the gradient
Ve(A) is not guaranteed to be symmetric. Also,
observe that the dimension of S™"is m = n(n +
1/2), hence, it is natural to identify S™" with R™.
The reduced dimension along with the fact that
Definition 2.3 doesn’t account for the symmetric
structure of the matrix when the argument to ¢ is
a symmetric matrix served as a motivation to
define a “constrained gradient” or “symmetric
gradient” in R™ reasoned to account for the
symmetry in S™".

Cla'm 24 Let (p . Rnxn - R AT gnxn and

Qsym be the real-valued function that is
Then GE the restriction of ¢ to S™, ie., @ :=
@ S""-— R. Let G be the gradient of ¢ as defined

nxn

in Definition 2.3is the linear transformation in S
that is claimed to be the “symmetric gradient” of
@sym and related to the gradient G as

follows

GE'™(A) = G(A) + G" (A) = G(A) o,

where - denotes the element-wise Hadamard
product of G(A) and the identity I. Theorem 3.7 in
the next section will demonstrate that this claim is
false. Before that, however, note that S"™" is a
subspace of R™" with the induced inner product in
Definition 2.1. Thus, the derivative in Definition 2.3
is naturally defined for all scalar functions of
symmetric matrices. The Fr'echet Derivative of ¢
when restricted to the subspace S™" automatically
accounts for the symmetry structure. For
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completeness, we re-iterate the definition of Fr'echet

. 4 Qanxn
0 I
2n X

derivative of ¢ restricted to the
in S")'l.': SU(:’b ﬁ?ﬂf Subspace
Snxn.

Definition 2.5. The Fr'echet derivative of the function
R at A in S" is the unique linear transformation

Do(A)

) A+ H)— ¢(A) —Do(A)H)
lim - ()

[l H]|->0 [\ H|

nxn

for any Hin S, The Riesz Representation theorem
then asserts the existence of the gradient Ggym(A) :=
Vsym(A) in S™" such that

thym(A) Hig = De(A)[H]

There is a natural relationship between the gradient
in the larger space R™" and the restricted subspace
S™". The following corollary states this relationship.

Corollary 2.6. If G € R™" be the gradient of ¢ : R™"
-— R, then Ggyr,, = sym(G) is the gradient in

gu)(n Qnxn

Of Dsym := Oenxn SV¥" — R
Proof. From Definition 2.3, we know that D@(A)[H] =
hG(A),Hie for any H in R™™". If we restrict attention to
Hin S, then,

D(A)[H] = hG(A),Hir = hVesym(A),Hie .
This is true for any H in S™", so that by Corollary 2.2
and uniqueness of the gradient,

Geym(A) = sym(G(A))
is the gradientin S™". 0

An lllustrative Example 1. This example will
illustrate the difference between the gradient on R™"
and S™". Fix a non-symmetric matrix A in R™" and
consider a linear functional, ¢ : R™" -— R, given by
@(X) = tr(AX) for any X in Rnxn.

The gradient Vo in R™" is equal to A, as defined by
the Fr'echet derivative Definition 2.3. However, if ¢ is

restricted to S™", then observe that Vo gz sym(A)
= (A + AT)/2 according to Corollary 2.6 !

Thus the definition of the gradient of a real-valued
function defined on S™"in Corollary 2.6 is ensured to
be symmetric. We will demonstrate that Claim 2.4 is
unnecessary. In fact, the correct symmetric gradient
is the one given by the Fr'echet derivative in
Definition 2.5, Corollary 2.6, i.e. sym(G). To do this,
we first illustrate through a simple example that
G“@M as defined in Claim 2.4 gives an incorrect

gradient.

HYPERGEOMCTRIC
MATRIX ARGUMENT

FUNCTION WITH

Hypergeometric Functions; The noncentral X* ,
noncentral F ajid multiple correlation distributions, as
found by Fisher (1928), involve Bessel and
hypergeometric functions which can all be written as
special cases, for particular integers p and q, of the
generalized hypergeometric function.

() -e- x

(0y)y =rv

(a_)
R

o pp— Bob Byeeeesbof %) = & NS )
3 a o (b)y

1)

where the hypergeometric coefficient (a)y. is given by

(a), =

X a(a + 1) «v. (8 + k = 1)

(2)
Exponential

X

()a
ofolx) =&

Binomial series

P (a; x) = (1-x)"®

10
(4)

2
Bessel (In the noncentral - distribution)

° x - . n '
Pl 3ng 2 xB) w ) %990 gunt-25 ap/ ;S s1n™ Y @
01" 2 4 ° o

Confluent (in the noncentral P distribution)

?P.(a; b; x)

1F1
Gaussian hypergeometric

oFy(8yy 855 b5 x) )

The corresponding multivariate distributions involve
a generalization of this function to the case in
which the variable x is replaced by a symmetric
matrix S and P is a real or complex valued
symmetric function of the latent roots of S. The
hypergeometrie functions which appear in the
distributions of the matrix variates are given by the
Constantine (1963).

DEFINITION

i (8 2p-rein )y Gui8)
3 Wgeereatg: 8) = X - T «
k=o k& (W3l "“’;>x (8)

a ,..-,ap; b ‘.o-’b

1
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are real or complex constants and the multivariate
hypergeometrio coefficient (a)x is given by

(a) 7L (a-2 - a0
= B - - -
s 1wl “ ky

(9
Where, as before

(a)y =a(a+1) ... (a+Xk=-1)
(10)

The latent roots distribution s involve functions of
both population and sample roots, namely,

DEFINITION

v"q\l’......,\[ bl"""’q‘ g, )
4..‘\../(.‘.\X'J

C.lln)k'

@ (nl)m...(np)I
= I b —— e

o k ‘bl)l"'(bq)h

(11)

Hypergeometric functions of product ST of symmetric
matrices are defined as symmetric functions of the
latent roots of ST although ST may not be a
symmetric matrix, its latent roots are equal to the
latent roots of S¥2 TS, TY2 STY2and TS.

Special Cases of Generalized Hypergeometric
Functions of Matrix Argument;

Now special cases of the generalized
hypergeometric function of matrix argument are:

trs

FaAl(S) = e
V= (11.1)

-8
P S = I -8
1¥o(®:8) | L 1)
o1 én; -} XL0Y = . e B

0(n) (11.3)

The following integrals, which are a generalization of
Laplace and inverse laplace transforms, were used
by Bochner (1952) to define the Bessel function and
by Herz (1956) to define the hypergeometric
functions

And

520 (13)

= m(m-1)  pe—
- nd £ [ (a - 4(1-2))
i=1 (]4)

And
dotmar)
" wit)} - x e~d r
:.ﬁ;»".‘-‘{-—.‘f'fin.r')--,_.-L ¥ e St UL o A Ui a4 oSt b
- prqdul ..... api bl,...,bq; b; 8) “5'

The integral is taken over all matrices

T = ¥ + 4i¥ . . -
o for fixed positive definite Xo and Y
arbitrary real symmetric.

The hypergeometric function of two variables
follows from that of one, by an average over O(m)

qu(al......p: bx"“'bq‘ S, 1)

cabgi SHTH* Y(an)
O(m) (]h)

The function of two variables clearly does not
depend upon the order in which they occur, and it
has the same properties of Laplace and inverse
Laplace transform taken with respect to either
variable

ae d(mi1)
_—lr Ll T ¥

[’..-—) %0 (26 Dt S L R |

Yq\l ety 83 B,

’p01 e p G 'l-

} wim3)

(v 2
A J o' T 19 1** s in WL .

X _':..;é-‘-.a) LI A0 . Z M Lot ad i b i

...,lp: b weyb sb;5,U)

- pl’qoltll. Il‘ q

(18)

The power series for the function 1¥of2:=:T)
which occurs in the distribution (18) of latent roots
with unequal covariance matrices, may not
converge for all requisite values of S and T, but
the integral.

(Polas =5,7) = [ [T+ SHTH'|™ (¢R)
O(H) (19)

is well defined foral|S>0and T >0

Further integra representations of hypergeometrie
functions are given by Herz (1955), namely of =
as the moment generating function of the
multivariate beta distribution.

{®v 1
x'l(.;bﬂl) - —-J(—)——— J .‘r 8 |*

[
f .iq)r;zb-c) 0

54-5(-.”

a-g(me1)
|

. j1-1) (az)

(20)

Mamta Lata Chouhan'* Savita Tiwari®

www.ignited.in

191



Journal of Advances and Scholarly Researches in Allied Education

Vol. 17, Issue No. 2, October-2020, ISSN 2230-7540

and ,F; as the laplace transform of this function

| -&b) 1 -,
gPylag,apibis) = m===————" [ [I-57|
| m{8y) gid=ny) ©

-l-ﬂlh'll
17

1
b-ul-i(nal)

[1-7] (em)

(21

The hypergeometric functions of matrix argument
satisfy some of the Kummer relationel. Herz (1955)
gives

"

> = 3 oo R -1
o1 (8,1851058) = |1-5| z'x“"‘x"z"’"su’s) )
Deas | =,
- |I=5}| P y(b-ay,b-a,35:8)
And
tr S

1.Pl(a;b;s) = @ 1F1(b-az b; -S)

And also the obvious confluences

-1 .
alln 2’1(“1"2;.’3‘2 8) = lPl(al;b;S)
2—-

-1 .
Iim 1'1(‘1”’3“\ 8) = o'l“’"’)

.1--.

Probability Distribution with Matrix Argument; Here
we define number of probability ' distributions of
special functions with matrix argument. (i) The
gamma function of matrix argument is given by

-( _Q.M
J (cetz)a ) et 4z =1 "(a)
20 -

then the probability distribution is given by

a=( ‘!?5‘1' )
(detz) Rk

f—'.,(a)

(ii) The beta function of matrix argument is given by

f(2)d2 =

a-(m+1)/2 B-(m+1)/2

(det (I-2))

1 ata) [Tae)
Y;Ra+ﬁ)

I
S (det 2)
0

then the probability distribution is given by

[ atasp) -t 22 ) - %)

E
£(2)45 & ——————— (det Z) (det(1-2))
[ota) [2te)

for Z > 0;

R(a); R(p) > B -1

(iii) The H-function of matrix argument is given
by
N - v 1 = . 5 . Py .
T _“? (me1)/z p q[z}m ay) (8 ur)]u
“20 Fe80| (Byapyle-=-slbgebg)

P . S -
15, Cetegeegd TULRCRE - my - ayp)

- oy = R
J-‘:[xr:( A= vy = P LT, Taley > wgp)

then the probability distribution is given by

- == X, .
’-_rp‘“& a0 A - by - l_,?)’:'-:",(-‘“; s ayf)
f(3)aZ » —
B [Zoes  pap) 1 1R ,
;-1*-( 1Y By JI.“].( -~ ny - ayy
——L Rk ) pea z}“‘""i) ----- (0 ea )|
N TR0 PR e oY

) ey 5 AL Bl la
for g 0 a[qugj))*rlaadat 7 -8y -fay)> ()
(iv) We know that

etTAZ p (a;8;UA )(det n)B-(B42)/2 g
A>0 11

= [2(6)(cet 2)7P det(1 - v271)™@

then the probability distribution is given by

p-{ms1)/2
#laipiun Y(det A)

[mtpilaes 2)~F get(r - uz—1)—°

.—tr NG

£f(NaN =

For'” 0; R(Z) > 0, R(Z) > R(m); R(B) > 9;;_-1 -1.
(v) We know that

(m+1) /2 B

B O £
J (det 2) (det(1 + azZ)) VA
O

a8 [0 B2 )
- N, A Boct dot(B).Pzrl(f.l) o s Lé“l i~ AB)
e

then the probability distribution is given by

f=(ms 1) /2

IRE R %_‘ ) det Z) (det{T+az))" VY

f(2)dL = X

(o) Tt 2 yame(nif pr (805 90 52 5

For
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. m+1
0<2Z<B; R(\F)>——2-l
(vi) We know that

; I (det(I + 3))¥ (det(i + aZ)}* (det zf?" di
20

T2t Totn =9 =)
e 2F10nPi -~ p = 1-4)
T

then the probability distribution is given by

" [atp-v)(get(142)) (deti1aaz) P (det ayf

T [0 - PIgP, e s -3 1)

£(z)a

For
Z > 03 -R(y+u)>a(~?)>E;_1-1

Bivariate Probability Distribution with Matrix
Argument;

Here we define number of probability distribution of
special functions with matrix argument for bivariate
variables, (i) We know that

(i) We know that

. rosgash f—(!qi}/iﬂ -Ps"
J wtr{-N&)(det Z) "r,n

T S
A0 220

o ¥ r]-u, an

: Pya+l[ _4175 +fy 8140028
- Ck’m(detl\)f G lj/\ 1\ RS r]

r+1,8 bl,...,bs

then the bivariate probability distribution is given by

lu{Bmel) /i PG M geeed
ete(-A3){dat .".)‘ ar_:lu id "]
£(A ,2)8N 43 « bpece-s )
e P _y llé.l LIt
Cx. olaetA) © ~ 1
' rel,s Byseready
For

1 .
A> 05 R(P+ min by) > 5= - 15 (§ = 1,...,p)

And

-k) /2
Cy,m = o® G(mk)/2 Ta(x/2) =A{0 A

(i) We know that

. 7 f=(m+1)/2
J ) (det d)
20 A

rolw’
rei>
>
oes
-
reps
—

.'--‘,(".I.)U- & = =

M=, 2-4)7)

then the bivariate probability distribution is given by

(dos ) (=N | pgy
f(Z,A)aE én = s by

c 9 —<
Sl Aa 18 £ SHRE X8 &5 Bit

For

Z > 03 N> 05 —ReV< e A < 3

(iil) We know that

fp—(me1) /2

(det 2) k(A z)an az

2%o ado
=0, EZ'EA'Z[__’(.:-&;Z+§1‘\))~‘ﬁ(%z-%1’)

s

then the bivariate probability distribution is given
by

Pelme1)/2

(det Z) kgt AZ)
2, A)a an - - = S
R T LR LLIRF T o
For
Z2>0; A>0

(iv) We know that

-(z+1)/2 -tr AZ
J ] (det Z)f e
20 N\>0

kylhZ)ah &
w T Ca=-v)[arv)
fed+n

v
-

Then the bivariate probability distribution is
given by

P ={me3) /e ~wrAd
(Get zf - = UAD)

(s, A8z alh = .- ARE PUY)

[ T 2 Ve Tla-0iTas v )

ForZ>0;H( ™)>0.

(v) We know that

J J (det z)~p-(m1)/2
A>0

P (a,bjei=AZ)AA AL
250 21
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[ e)T (a-a)["(b-a)[(a)
Km T a)[7(e) [(e-a)

Then the bivariate probability distribution

(o) (o) "(e-a)(der z)P-(me1)/2

{2, N\)az oA = ——— e -
Cp,m! @A) (2RI [T(A)

- p¥,(a,biei- AZ)

For
2203 A>0; Re(A, a-d, b-k) > 0; ¢ # 0,-1,-2,...
CONCLUSION

In this article, we investigated the hypergeometric
function of a matrix argument is a generalization of
the classical hypergeometric series. It is a function
defined by an infinite summation, which can be used
to evaluate certain  multivariate  integrals.
Hypergeometric functions of a matrix argument have
applications in random matrix theory. For example,
the distributions of the extreme eigenvalues of
random matrices are often expressed in terms of the
hypergeometric function of a matrix argument.
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