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Abstract – Algebra is one of the main areas of pure mathematics that uses mathematical statements such 
as term, equations, or expressions to relate relationships between objects that change over time. Algebra 
is used in finance, engineering and numerous fields of science. It is actually very common to perform 
simple algebra without realizing it for an average person. If you've got 20 rupees for two rupee candy bars, 
for example, to go into a store. This shows us the 2x = 10 equation, where x is the number of sweets you 
can buy. Many people don't know that the Algebra is such a calculation; they do it only. Algebra is 
needed in your everyday life whether you like it or not. The role of the history of mathematics in 
improving the learning of mathematics has increased in recent years. Educators worldwide have 
developed and carried out research on the use of mathematical history in mathematical education. 
Certain results of this study were reported in meetings and in papers in different journals of interested 
organisations. A research programme, with contributions from many parts of the world, starts to emerge. 
This program includes a consolidated and critical bibliography of work done and a program that 
provides an understanding of the factors involved in the relationship between the history and 
educational sciences of mathematics, in various fields of mathematics, with students and pupils at 
various levels and with different backgrounds and environments. The aim is also to identify and 
distribute information and good practice in situations of learning and teaching. 
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INTRODUCTION 

The algebra has three historical stages in many 
texts: the rhetorical stage, the syncopated stage and 
the symbolic stage. By rhetoric we mean the stage in 
which all statements and arguments are expressed 
in words and phrases. Some abbreviations are used 
for algebraic expressions in the syncopated stage. 
And finally there is complete symbolized on the 
symbolic stage – every number, operation, 
relationship is expressed through a number of easily 
recognized symbols and symbol manipulations are 
carried out by well-understood rules. The three 
stages are definitely one way to look at algebra 
history. The conceptual phases are the geometry 
phase, in which most algebra concepts are 
geometric, a static equation resolution stage, in 
which the aim is to find figures that satisfy certain 
relationships, the dynamic function phase, in which 
motion is an underlying idea. Of course, not one of 
these or the previous three stages is united; there is 
always some overlap. The term algebraic reasoning 
was used to describe mathematical processes that 
generate problems with different representation 
patterns and models. Comprehension is an abstract 
thought expressing logical power. Piaget suggested 

that understanding in general and especially in 
mathematics is a highly complex abstraction 
process. Conceptual understanding in algebra can 
be characterized as the ability to recognize and to 
distinguish and interpreted between functional 
relationships between known and unknown, 
independent and dependent variables. The ability 
to read, write and manipulate both numerical 
symbols and algebraic symbols in formulas, terms, 
equations and inequalities is evident. Algebra 
fluences are also indicative of conceptual 
understanding in algebra through the confident use 
of vocabulary and meanings, and by flexible 
application of its grammar (i.e. mathematical 
qualities and conventions). 

We begin with a short review of some of the basic 
concepts of graph theory and group theory. One of 
the most widely known and extensively studied 
family of vertex transitive graphs is the family of 
Cayley graphs. The construction of Cayley graphs 
is depend upon on groups. We restrict are attention 
only to finite groups. 

Let G denote an abstract group and let S ⊆ G such 

that 1G ∈/ S. The Cayley graph of G relative to S is 
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the graph Γ = Cay(G, S)that has as vertices the 
elements of G, and edge set the setE(Γ(G, S)) = {(g, 

h) | hg−1 ∈ S}. This construction will produce a 
directed graph, but if S = S −1 we will obtain an 
undirected Cayley graph. The edges of Γ represent 
the orbits of unordered pairs of elements of G under 
the action of S. If hSi is a proper subgroup of G and 

g ∈ G, g /∈ hSi, then the vertices 1G, g ∈ V (Γ(G, S)) 
= G belong to different components of the graph and 
therefore the graph is not connected. We can 
observe that S generates the whole group G if and 
only if the corresponding Cayley graph is connected 
(or in other words, S generates G if and only if there 
is path which connects any two vertices of V (Γ(G, 
S)) = G). It easily follows that Cay(G, S) has valency 
|S| .  

Example 1 The Cayley graph Γ(S3, 
{(12),(123),(132)}). 

 

Example 2 Let G be a finite group. Let H be a 
subgroup of G, and define the set S to be the 
subgroup H with the identity removed. Let gh be an 
edge of Γ(G, S), then gh−1 is an element of S, and 
hence is an element of H, which implies that the 
cosets Hg and Hh are equal. Thus Γ(G, S) is a graph 
depicting the cosets of H in G, where two vertices 
are adjacent if and only if they are in the same coset 
thus there are |G : H| components. 

Lemma 1. Let G be a finite group. The Cayley graph 

Γ(G, S) is a connected graph if and only if S ⊆ G is a 
generating set for G. 

Example 4 Three Cayley graphs Γ(G, S) of the 
dihedral group G = D8. The first two graphs are 
examples of a Cayley graph depicting the cosets of 
D8 for the subgroups hbi and hai respectively (where 
S is the subgroup minus the identity in each case). In 
the final graph, S = {a, b, b

3
} is a generating set for 

D8. Observe that this graph is connected. 

Number of Cayley Graphs on Dihedral Group D2n 

In this section we determine the number of Cayley 
graphs on a dihedral group D2n that are undirected. 

The complement S¯ of Cayley subset S with respect 
to G\{1G} is also a Cayley subset. Because if x ∈ S¯ 

then x /∈ S and since S is a Cayley subset x −1 ∈/ S. 

Hence x −1 ∈ S¯ i.e. S¯ is Cayley subset. It is clear 
The Γ =¯ Cay(G, S¯) and Γ = Cay(G, S) have the 
same vertex set as G, where vertices g and h are 
adjacent in Γ =¯ Cay(G, S¯) if and only if they are not 
adjacent in Γ = Cay(G, S). So the automorphism 
group of Γ = Cay(G, S) is equal to the automorphism 
group of Γ =¯ Cay(G, S¯). Recently Gholamreza 
Aghababaei Beny and Zarullo Rakhmonov [14] have 
derived a formula for number of Cayley groups on Zn 
that are undirected. 

Theorem 1 Let G be a finite group. Number of 
Cayley graphs undirected and contrasting with group 
of Zn are: 

i) If n = 1, then nonexist the undirected 
Cayley graph for group Zn. 

ii) If n = 2 or 3, then number of Cayley graph 
that undirected is one. 

iii) If n ≥ 4 and n is even then number of 
Cayley graph that undirected is 

 

iv) If n ≥ 4 and n is odd then number of Cayley 
graphs that are undirected is 

 

Theorem 2 . Suppose |Sk| denotes the number of 
Cayley graphs Γ = Cay(D2n, S) with |S| = k and n 
odd. Then 

 

Here  denotes the greatest integer ≤ x. 

Proof. Suppose n is odd. Then  

where   
The orders of the elements in the set A is 2. Hence 
for every element of A its inverse is itself. If 

 is an arbitrary element of . 

So, its inverse is  If S is a Cayley subset of 
D2n with k elements, then  if and 

only if . Since we have  such 
pairs in A¯, we can construct a Cayley subset with 
k elements by choosing m ( ) pairs of 

 elements of A. This implies that the 
number of Cayley graphs  that 
undirected and having k elements is 



 

 

Panse Prashant Satish1* Dr. Rishikant Agnihotri2 

w
w

w
.i
g

n
it

e
d

.i
n

 

182 

 

 Journal of Advances and Scholarly Researches in Allied Education 
Vol. 18, Issue No. 1, January-2021, ISSN 2230-7540 

 

 

As the proof of the following theorem is similar to that 
of Theorem 2.2.2 we omit the proof. 

Theorem 3 Let |Sk| be the number of Cayley graphs 
Γ = Cay(D2n, S) with |S| = k and n even. Then 

 

Theorem 4 Let N(D2n) denotes the number of 
Cayley graphs on a Dihedral group D2n. Then 

 

Proof. If S is a Cayley subset of D2n with k elements 
(1 ≤ k ≤ n−1), then its complement S¯ with respect to 
D2n\{1} is also a Cayley subset of D2n with (2n − 1 − 
k) elements. Thus |Sk| = |S2n−1−k|, 1 ≤ k ≤ n − 1. 
Suppose n is odd. Then, we have 

 

Theorem 5 Let N(D2n)denotes the number of Cayley 
graphs on a Dihedral group D2n. Then 

 

Proof. Case (i) n-odd. If S is a Cayley subset of D2n 

and b i ∈ S, 0 < i ≤ n − 1 if and only if b n−i ∈ S. Also 
note that inverse of abi , 0 ≤ i ≤ n−1 is itself. Hence 
N(D2n) is the number of nonempty subsets of a set 

with  elements. i.e. , if n is 
odd. The proof of the other case is similar. 

Remark 6 Combining Theorem 4 and Theorem 5 we 
have the following beautiful identities: 

 

Number of Cayley Graphs on Symmetric Group 
Sn 

In this section we investigate some properties of the 
Cayley graphs Γ on a symmetric group Sn. A 
permutation of a set Ω is a bijection α : Ω → Ω. If Ω 
is a finite set and | Ω |= n, then an arrangement of 
Ω is a list x1, x2, ..., xn with no repetitions of all the 
elements of Ω. 

The family of all the permutations of a set Ω, 
denoted by SΩ, is called the symmetric group on 
Ω. When Ω = {1, 2, ..., n} , SΩ is usually denoted 
by Sn, and it is called the symmetric group on n 

letters. If α ∈ Sn and i ∈ {1, 2, ..., n}, then α fixes i if 
α(i) = i, and a moves i if  

Let i1, i2, ..., ir be distinct integers in {1, 2, ..., n}. If 

α ∈ Sn fixes the other integers (if any) and if 

 

then α is called an r-cycle. One also says that α is 
a cycle of length r. A 2-cycle interchanges i1 and i2 
and fixes everything else; 2-cycles are also called 
transpositions. A 1-cycle is the identity, for it fixes 
every i; thus, all l-cycles are equal: (i) = (1) for all i. 
We now introduce new notation: an r-cycle α, as in 
the definition, shall be denoted by . Two 
permutations α  are disjoint if every i moved 
by one is fixed by the other: if 

 of permutations 
is disjoint if each pair of them is disjoint. Disjoint 
permutations  commute. Every permutation 

 is either a cycle or a product of disjoint cycles. 

Every permutation is a product of 2-cycles. We 
shall refer to 2-cycles as transpositions. A 
permutation  is said to be an even permutation 
if it can be represented as a product of an even 
number of transpositions. We call a permutation 
odd if it is not an even permutation. Sn has as a 
normal subgroup of index 2 the Alternating group, 
an, consisting; of all even permutations. More 
details about Symmetric groups. Now we proceed 
towards some theorems about the number of 
Cayley graphs. 



 

 

Panse Prashant Satish1* Dr. Rishikant Agnihotri2 

w
w

w
.i
g

n
it

e
d

.i
n

 

183 

 

 A Study of Theory on Algebra Graphs on Group D2n, Sn and An Group 

Theorem 2.3.1 Suppose |Sk| denotes the number of 
Cayley graphs Γ = Cay(Sn, S) with |S| = k. Then 

 

and  denotes the greatest integer ≤ x. 

Proof. Suppose . Then  where 

  are  Since 

in the symmetric group  every k-cycle has order 
k, and if σ is k-cycle and τ is an is a l-cycle and these 

two cycles are disjoint then  and this 
element has order lcm(k, l). Therefore all of elements 
in A has order 2. Hence for every element of A its 

inverse is itself. Also if  there are 

 And if kr ≤ n, where 

, then the number of , where ρ is a 

product of k disjoint  
where we denotes |A| by γ(Sn). If S is a Cayley 

subset of Sn with k elements, ρ ∈ S if and only if ρ 

−1 ∈ S. Since we have b n!−1−γ(Sn) 2 c such pairs 
in A¯, we can construct a Cayley subset with k 

elements by choosing m (  
elements of A. This implies that the number of 
Cayley graphs  that undirected and 
having k elements is 

 

Theorem 2.3.2 Let N(Sn) denotes the number of 
Cayley graphs on a symmetric group Sn. Then 

 

Proof. If S is a Cayley subset of Sn with k elements 
(0 ≤ k ≤ n! − 1), then its complement S¯ with respect 

to S ∗ n = Sn\{1Sn } is also a Cayley subset of Sn 
with (n! − 1 − k) elements. Thus |Sk| = |Sn!−1−k|, 

 

Theorem 2.3.3 Suppose |Sk| denotes the number of 
Cayley graphs Γ = Cay(An, S) with |S| = k. Then 

 

Proof. Suppose  Then  
where A =  are disjoint, 2-cycle and the 

number of those are even, . 
We note that An ≤ Sn and in the symmetric group 
Sn, every k-cycle has order k, and if σ is k-cycle 
and τ is an is a l-cycle and these two cycles are 
disjoint then στ = τ σ and this element has order 
lcm(k, l). Therefore all of elements in A has order 2. 
Hence for every element of A its inverse is itself. If 

kr ≤ n, where 1 < r ≤ n, then the number of ρ ∈ Sn, 
where ρ is a product of k disjoint 

 is even then 

 where 

we denotes  If S is a Cayley subset of An 
with k elements, ρ ∈ S if and only if  Since we 

have  such pairs in A¯, we can construct a 
Cayley subset with k elements by choosing 

 pairs of A¯ and k − 2m elements of A. 
This implies that the number of Cayley graphs 

 that undirected and having k elements 
is 

 

Theorem 2.3.4 Let N(An) denotes the number of 
Cayley graphs on a Alternating group An. Then 
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Non-Isomorphic Cayley graphs of Symmetric 
groups 

A fundamental problem in graph theory is the so-
called isomorphism problem, that is, to decide 
whether two given graphs are isomorphic or not. In 
this section we investigate the isomorphism problem 
for finite Cayley graphs on symmetric group Sn.  

The following Theorems are basic for Cayley graphs 
and Cayley subsets. 

Theorem 2.4.1 [41] Let Sn be Symmetric group and 
n > 2 then Aut(Sn) = Sn except when n = 6. In the 

exceptional case  . 

 is an arbitrary 
automorphism of Symmetric group Sn, then it can be 
expressed by 

 

Theorem 2.4.2 [46]If α is an automorphism of group 
G, then Cay(G, S) and Cay(G, α(S)) are isomorphic. 

The converse of the Theorem 2.4.2 is not true. Two 
Cayley graphs for a group G can be isomorphic even 
if there is no automorphism of G relating their 
connection sets. 

The converse of Theorem 2.4.2 about Cayley 
Graphs of Alternating group A4 and all disconnected 
Cayley graphs of A5 [51] and all Cayley graphs of A5 
of valency 4 is true [70] which was a conjecture 
posed by Li and Praegar [62]. 

In general it is difficult to compute the number of 
Cayley graphs on a group G that are undirected up 
to isomorphism. In this section we determine the 
number of non-isomorphic Cayley graphs of 
symmetric group Sn and Alternating group An for n = 
3, 4. 

First we prove two lemmas which are necessary to 
prove our results. 

  

 

 

Lemma 2.4.4 Let Sn(n ≥ 4) be Symmetric group. 
Then Cay(Sn, {(12),(13)}), Cay(Sn, {(12),(34)}), 
Cay(Sn, {(12),(13)(24)}) Cay(Sn, {(123),(132)}) are 
all Non-Isomorphic to each other. i.e up to 
isomorphism, there are at least 4 Cayley graph on 
Symmetric group Sn of valency 2. 

Proof. Let H = h(12),(13)i be a subgroup of Sn. Let 
gh be an edge of Cay(Sn, {(12),(13)}), then gh−1 is 
an element of H\{1Sn }, which implies that cosets 
Hg and Hh are equal. So two vertices are adjacent 
if and only if they are in the some coset. Thus there 
are |Sn : H| components; each of which is a clique 
of size |H|. But 

 

 

 

This implies that Cayley graphs of Sn of valency 2 
as above are all nonisomorphic to each other. 

CONCLUSION 

Moreover it is shown that any non-commuting 
elements remains non adjacent in cyclic graph. It 
can be said cyclic graph lies in between power 
graph and commuting graph. That is if power 
graph, cyclic graph and commuting graph are 
constructed from same finite group then power 
graph is a sub graph of cyclic graph and cyclic 
graph is a sub graph of commuting graph. It is 
found in a cyclic graph maximum degree is always 
attainable. It is also shown that whatever the finite 
group is, cyclic graph is always connected. It‘s 
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found the chromatic number of cyclic graph is at 
least the maximum order of the element in the group. 
Independence number for Z2n is only settled and for 
remaining graphs it still remains an interesting open 
problem. Remaining two algebraic graphs are 
constructed from finite rings. For any finite ring and a 
polynomial with coefficients from the ring a 
polynomial graph is constructed. In this algebraic 
graph vertices are the elements of the finite ring and 
two vertices are adjacent if one is the image of the 
other under the polynomial. Some properties of the 
polynomial graph such as degree of vertices, 
maximum degree cardinality of edges are studied. 
Moreover for some fixed polynomials the obtained 
graph structure is determined completely. The 
maximum degree of the polynomial graph in a finite 
field is at most one more than the degree of the 
polynomial. In polynomial family graph a family of 
polynomial is used instead of a single polynomial. 
This algebraic graph is constructed from finite ring 
and the edges are constructed from family of 
polynomials. That is, a graph is constructed from a 
family of polynomials in a finite ring. In this graph the 
ring elements are the vertices. The obtained new 
graph is denoted by polynomial family graph 
generated by that family. Whenever an element is 
the image of the other with respect to some 
polynomial in the family both the elements are made 
adjacent. Few parameters in polynomial family graph 
of a finite ring such as edge domination number, 
vertex domination number, independence number, 
chromatic number and matching number are studied. 
Here the vertex domination number is found in two 
different ways. The concepts polynomial graphs and 
polynomial family graphs can be further developed in 
a lot of ways. The study of algebraic structures, using 
the properties of graphs, becomes an exciting 
research topic in the last twenty years, leading to 
many fascinating results and questions. There are 
many papers on assigning a graph to a ring or group 
and investigation of algebraic properties of ring or 
group using the associated graph. In short a 
wonderful world of algebraic graph theory is open for 
further analysis. 
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