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Abstract – In mathematics, the p-Laplacian, or the p-Laplace administrator, is a quasilinear elliptic 
incomplete differential administrator of second request. It is a nonlinear speculation of the Laplace 
administrator, where p is permitted to go over 1<p<∞. The properties of the spectrum of the weighted p-
Laplacian on a complete Riemannian complex with evolving geometry it is a notable component that 
spectrum as an invariant amount advances as the space does under any geometric flow. The variation 
recipes, monotonicity, and differentiability for the first eigen value of the p-Laplacian on a n-dimensional 
shut Riemannian complex whose measurement develops by a summed up geometric flow. the spectrum 
of the Laplacian on noncompact non-complete manifolds also attracts attention of mathematicians and 
physicists in the past three decades, since the investigation of the spectral properties of the Dirichlet 
Laplacian in infinitely extended regions has applications in elasticity and so on. The PDEs involving p-
Laplacian are considered in differential geometry in the investigation of critical points for p-harmonic 
maps between Riemannian manifolds and the eigenvalue problems for p-Laplacian on Riemannian 
manifolds serve for estimations of the diameter of the manifolds. By using the theory of self-adjoint 
operators, the spectral properties of the linear Laplacian on a domain in a Euclidean space or a manifold 
have been concentrated broadly. 
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1. INTRODUCTION 

In science, the p-Laplacian, or the p-Laplace operator, 
is a quasilinear elliptic partial differential operator of 
second request. It is a nonlinear generalization of the 
Laplace operator, where p is permitted to range over 
1<p<∞. In science, numerical physics and the 
hypothesis of stochastic processes, a harmonic 
function is a twice continuously differentiable function 
f: U→R, where U is an open subset of R

n
, which fulfills 

Laplace's equation. The properties of the spectrum of 
the weighted p-Laplacian on a complete Riemannian 
complex with evolving geometry it is a notable 
component that spectrum as an invariant amount 
advances as the space does under any geometric 
flow. All through, we will consider a n-dimensional 
complete Riemannian complex (M, g, dμ) equipped 
with weighted measure dμ=e

−ϕ
dv and potential 

function ϕ∈C∞(M, dμ), whose metric g=g(t) advances 
along 

Either the Ricci-harmonic flow or volume preserving 
Ricci-harmonic flow 

2. THE FIRST EIGENVALUE OF p-
LAPLACIAN ON EVOLVING GEOMETRY 
AND APPLICATIONS  

The variation method, monotonicity, and 
differentiability for the first eigen value of the p-
Laplacian on a n-dimensional shut Riemannian 
complex whose measurement develops by a 
summed up geometric flow. It is demonstrated that 
the first nonzero eigen value is monotonically non-
diminishing along the flow under certain geometric 
conditions and that it is differentiable all over the 
place. These outcomes provide a brought together 
approach to the investigation of eigen value 
variations and applications under numerous 
geometric flows.  

2.1 Geometric flow  

Let (M, g) be an n-dimensional shut Riemannian 
complex (n >1). Let g(x, t) be a one parameter group 
of measurements for t ∈ [0, T] and x ∈ M. We state 
that g(x, t) is a summed up geometric flow in the 
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event that it advances by the accompanying equation 
with g(x,0) = g0(x), where 0<T<Tε is the maximal time 
of presence, i.e., Tε is the first time where the flow 
explodes and h is an overall time-dependent 
symmetric 2-tensor. Here h is thought to be smooth in 
the two factors t and x. This is clear since g is likewise 
smooth in the two factors. The scaling factor 2 in (1) is 
immaterial while the negative sign might be important 
in some specific applications to keep the flow either 
forward or in reverse in time. 

 

Two popular examples of geometric flows in this class 
are: the Ricci flow with h being the Ricci shape tensor, 

and the mean bend flow with h = H  (where H is the 

mean arch and  is the second crucial structure on 
M). Different examples incorporate Yamabe flow, 
Ricci-harmonic flow, RicciBourguignon flow. One may 
impose boundedness condition on tensor h. Truth be 
told, such boundedness and sign assumptions on h 
are preserved as long as the flow exists, so it follows 
that the measurements are consistently same. 
Precisely, if −K1g ≤ h ≤ K2g, where g(t), t ∈[0, T] is the 
flow, at that point 

 

To see the last limits, we consider the evolution of a 
vector structure |X|g = g(X, X), X ∈ TxM. From (1) and 
the boundedness of the tensor h, we have |∂tg(X, X)| ≤ 
K2g(X, X), which implies (by coordinating from t1 to t2) 

 

Taking the exponential of this gauge with t1 =0 and t2 
=T yields |g(t)| ≤ e

K
2
T
 g(0) from which the uniform 

boundedness of the measurement follows. In this 
manner, if there holds boundedness assumption 

 

The metric g(t) are consistently limited underneath and 
above forever 0 ≤ t ≤ T under the geometric flow (1). 
At that point, it doesn't make a difference what metric 
we use in the contention that follows.  

2.2 Eigen value of p-Laplacian  

The p-Laplace operator is characterized by 

 

For p∈[1, ∞), where div is the difference operator, and 
the adjoint of inclination (graduate) for the L

2
 -standard 

instigated by g on the space of differential structures at 
the point when p =2, ∆2, g is the standard Laplace-
Beltrami operator. The eigen values and the 

corresponding eigen functions of ∆p, g fulfill the 
accompanying nonlinear eigen value problem 

 

It is notable that the principal image of (2) is 
nonnegative all over and carefully positive at the 
neighborhood of the point where ∇ f ≠ 0. We likewise 
realize that (2) has feeble solutions with only partial 
routineness of class C

1, α
,(0 < α < 1) as a rule. 

Intrigued perusers can locate the traditional papers by 
Evans and Tolksdorff. Notice that the least eigen value 
of ∆p,g on shut complex is zero with the corresponding 
eigen function being a constant. Subsequently, we 
allude to the infimum of the positive eigen values as 
the first nonzero eigen value or simply the first eigen 
value. The first eigen value of ∆p, g is portrayed by the 
min-max principle 

 

Satisfying the following constraint M|f|g
p−2

fdµg = 0, 
where dµg is the volume measure on (M,g). Clearly, 
the infimum doesn't change when one replaces W

1, 

p
(M) by C

∞
(M). The corresponding Eigen function is 

the energy minimizer of Rayleigh remainder (3) and 
fulfills the accompanying Euler-Lagrange equation 

 

For φ∈C0
∞
(M) in the cognition of distribution it is 

notable that p-Laplacian has discrete eigen values 
yet remains obscure whether it only has discrete 
eigen values for limited connected domains. Other 
notable outcomes reveal to us that the first nonzero 
eigen value is simple and confined. Here the 
simplicity shows that any nontrivial eigen function 
corresponding to λp, 1 doesn't change sign and that 
any two first eigen functions are constant multiple of 
one another. In contrast to the spectrum of the 
Laplace-Beltrami operator (the case p=2), the p-
Laplacian is nonlinear as a rule. Besides, it isn't 
known whether λp, 1 or its corresponding eigen 
function is C

1
-differentiable (or even locally Lipschitz) 

along any geometric flow of the structure (1). 
Notwithstanding, it has been pointed out that the 
differentiability for the case p=2 is a consequence of 
eigen value perturbation theory; see, for instance, 
and the references therein. Consequently, any 
approach that accepts differentiability of eigen 
values and eigen functions under the flow must be 
applied to the case p=2.  

Presently to keep away from the differentiability 
assumption on the first eigen value and the 
corresponding eigen function for the situation p≠2, 
we will apply strategies introduced in under the Ricci 
flow to examine the variation and monotonicity of λp,1 

(t) =λp,1(t, f(t)), where λp,1(t, f(t)) and f(t) are thought 
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to be smooth. The evolution and the monotonicity 
formulas for the first eigen value inferred here don't 
depend on the evolution of the eigen function. The 
eigen function only requirements to fulfill certain 
normalization condition. There are numerous 
outcomes on the evolution and monotonicity of Eigen 
values of the Laplace operator on evolving manifolds 
with or without ebb and flow assumptions. One can 
find under the Ricci flow, under Ricci-harmonic flow 
and along unique geometric flow with entropy 
techniques. The investigation of the properties of 
eigen values of the p-Laplacian on evolving complex is 
still youthful. The main point of this paper is to 
investigate if those known properties of λp, 1 on static 
measurement and for the case p=2 on evolving metric 
can be stretched out to different geometric flows. We 
anyway intend to develop a brought together 
calculation that can be utilized for this purpose on 
time-dependent measurements. Many interesting 
outcomes concerning the conduct of λp, 1 can be found 
in for static measurements and for evolving 
measurements along different geometric flows.  

3. GEOMETRIC PROPERTIES OF 
SOLUTION TO THE ANISOTROPIC p-
LAPLACE EQUATION IN DIMENSION TWO  

We consider solutions to the equation (5) with a 
consistently elliptic and Lipschitz continuous 
symmetric lattice, in dimension two. We consider 
solutions u ∈ W

1,p
loc (Ω) to the following savage elliptic 

equation which we will call the anisotropic p-Laplace 
equation 

 

Where Ω is a two-dimensional domain, p fulfills 
1<p<∞, and A =A(x) is a symmetric network satisfying 
hypotheses of uniform ellipticity and of Lipschitz 
continuity. Equation (5) can be seen as the Euler 
equation for the variational integral 

 

And its interest arises from various applied contexts 
related to composite materials, (for example, nonlinear 
dielectric composites, whose nonlinear behavior is 
displayed by the supposed power-law. In such a case 
many things are thought about the local behavior of 
solutions and about the structure of level lines and 
critical points. First, the Hartman and Wintner theorem 
[HW] discloses to us that for each x

0
 ∈ Ω, and up to a 

linear change of coordinates which renders A(x
0
)= 

const. I, u(x) − u(x
0
) is asymptotic to a homogeneous 

harmonic polynomial of x−x
0
, and this asymptotics 

carries over to first request derivatives. From this basic 
fact, one can infer that in the event that u is non-
identically constant, then its critical points are isolated. 
Besides, on the off chance that x 

0
 is a zero of 

multiplicity m for ∇u, then the level set {x | u(x) = u(x
0
)} 

is composed, near x
0
, by exactly m+1 simple arcs 

intersecting at x
0
 only. Next, it is possible to evaluate 

the number, and the multiplicities, of critical points of a 
solution as far as properties of its Dirichlet data [A1], 
[A2], or of other types of boundary data [AM1]. Such 
outcomes have also been generalized to weak 
solutions u to (6) when the coefficient matrix A is 
simply limited measurable [AM2].  

4. EIGENVALUE INEQUALITIES FOR THE 
P-LAPLACIAN ON A RIEMANNIAN MANIFOLD 
AND ESTIMATES FOR THE HEAT KERNEL  

By using the theory of self-adjoint operators, the 
spectral properties of the linear Laplacian on a domain 
in a Euclidean space or a manifold have been 
concentrated widely. Mathematicians generally are 
interested in the spectrum of the Laplacian on 
compact manifolds (with or without boundary) or 
non-compact complete manifolds, since in these two 
cases the linear Laplacians can be particularly 
reached out to self-adjoint operators. Nonetheless, 
the spectrum of the Laplacian on noncompact non-
complete manifolds also attracts attention of 
mathematicians and physicists in the past three 
decades, since the investigation of the spectral 
properties of the Dirichlet Laplacian in infinitely 
extended regions has applications in elasticity, 
acoustics, electromagnetism, quantum physics, and 
so forth As of late, the author has proved the 
presence of discrete spectrum of the linear Laplacian 
on a class of 4-dimensional rotationally symmetric 
quantum layers, which is non-compact non-complete 
manifolds, in under some geometric assumptions 
therein.  

A natural generalization of the linear Laplacian is the 
purported p-Laplacian underneath. Although many 
outcomes about the linear Laplacian (p=2) have 
been obtained, many rather basic questions about 
the spectrum of the nonlinear p-Laplacian remain to 
be addressed. Let Ω be a limited domain on a n-
dimensional Riemannian manifold (M, g). We 
consider the following nonlinear Dirichlet eigen value 
problem. 

 

Where 

 

is the p-Laplacian with 1<p<∞. In local coordinates 
{x1,… ,xn} on M, we have 
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Where  

 

And (g
ij
)=(g

ij
)
-1

 is the inverse of the metric matrix. 

5. MAXIMUM RELATING RADIAL p-
LAPLACIAN BY APPLICATIONS TO 
NONLINEAR EIGEN VALUE PROBLEMS 

Problems involving p-Laplace operator are subject of 
intensive investigations as they illustrate many of 
phenomena that happen in nonlinear analysis. Among 
their applications are singular and non-singular 
boundary value problems which appear in various 
branches of mathematical physics. They arise as a 
model example in the liquid dynamics; glaciology; 
stellar dynamics; in the theory of electrostatic fields; in 
the more general context in quantum physics; in the 
nonlinear elasticity theory as a basic model; and many 
others. The PDEs involving p-Laplacian are 
considered in differential geometry in the investigation 
of critical points for p-harmonic maps between 
Riemannian manifolds and the eigenvalue problems 
for p-Laplacian on Riemannian manifolds serve for 
estimations of the diameter of the manifolds. 
Eigenvalue problems involving p-Laplacian are applied 
in functional analysis to infer sharp Poincar'e and 
Writinger type inequalities, Sobolev embeddings and 
isoperimetric inequalities. Geometric properties of p-
harmonic functions play significant part in the theory of 
Carnot–Caratheodory groups like Heisenberg group 
and in the analysis on measurement spaces. One of 
the problems we experience when investigating p-
harmonic equation is that not many explicit solutions 
are known – affine, quasiradial, radial. Among them 
radial solutions form the most stretched out nontrivial 
class in which many properties of p-harmonic world 
can be recognized? Another motivation to examine 
radial solutions comes from the seminal paper by 
Gidas, Ni and Nirenberg who expanded Serrin's 
moving plane strategy from and proved that at times 
only radial solutions are admitted. Additionally, it can 
happen that among the solutions of the PDE are the 
radial ones regardless of whether the radial solutions 
are by all account not the only ones. We shall consider 
radial solutions of the equation 

 

We assume that p>1, n>1, R∈(0,∞] (for R=∞ the 
above equation is defined on R

n
), a(.) is nonnegative 

and belongs to a certain class of functions which will 
be depicted later, while φ is an arbitrary odd 
continuous function with the end goal that τφ(τ) is of 
constant sign for L

1
 almost all τ 's. In general our 

equation is given in a non-divergent form.  

 

 

6. CONCLUSION  

In mathematics, the p-Laplacian, or the p-Laplace 
operator, is a quasilinear elliptic partial differential 
operator of second request. It is a nonlinear 
generalization of the Laplace operator, where p is 
allowed to range over 1<p<∞. The variation formulas, 
monotonicity and differentiability for the first 
eigenvalue of the p-Laplacian on an n-dimensional 
shut Riemannian manifold whose measurement 
develops by a generalized geometric flow. By using 
the theory of self-adjoint operators, the spectral 
properties of the linear Laplacian on a domain in a 
Euclidean space or a manifold have been 
concentrated broadly. Mathematicians generally are 
interested in the spectrum of the Laplacian on 
compact manifolds (with or without boundary) or non-
compact complete manifolds, since in these two cases 
the linear Laplacians can be extraordinarily stretched 
out to self-adjoint operators. Problems involving p-
Laplace operator are subject of intensive 
investigations as they illustrate many of phenomena 
that happen in nonlinear analysis. Among their 
applications are singular and nonsingular boundary 
value problems which appear in various branches of 
mathematical physics. 
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