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Abstract - In this paper, we have constructed a non-static cylindrically symmetric cosmological model 
which is specially homogeneous non-degenerate Petrov type-I. the energy momentum tensor has been 
assumed to be that of a perfect fluid with an electromagnetic field and the 4-current is either zero or 
space-tike. Various physical and geometrical properties like pressure, density, scalar of expansion and 
shear etc have been found and discussed.  
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1. INTRODUCTION  

Various relativists have shown their keen interest in 
construction of non-static cosmological models.  

Jacobs [5, 6] has studied the behavior of the general 
Bianchi-type I cosmological model in the presence of a 
spatially homogeneous magnetic field. This problem 
has been studied again by De [1] with a different 
approach. This work has been further extended by 
Tupper [11] to include Einstein – Maxwell fields in 
which the electric field is non-zero. He has also 
interpreted certain type VI0 cosmologies with 
electromagnetic field (Tupper [12]). Roy and Prakash 
[9], taking the cylindrically symmetric metric of Marder 
[8], have constructed a spatially homogenous 
cosmological model in the presence of an incident 
magnetic field which is also anisotropic and non-
degenerate Petrov type-I. Singh and Yadav [10] 
constructed a spatiaolly homogenous cosmological 
model assuming the energy momentum tensor to be 
that of a perfect fluid with an electromagnetic field. A 
non-static magnetichydrodynamic cosmological model 
in general relativity has been studied by Yadav and 
Singh [13] 

In this paper, taking the cylindrically symmetric metric 
of Marder [8], we have constructed a non-static 
cylindrically symmetric cosmological model which is 
spatially homogeneous non-degenerate Petrov type-I. 
The energy momentum tensor has been assumed to 
be that of a perfect fluid with an electromagnetic field 
and the 4-current is either zero or space-like. The 
requirement that the conductivity be positive imposes 
an additional restriction on the metric potentials. Here 
we have found and discussed various physical and 
geometrical properties like shear, expansion, pressure 
density etc.  

2. THE FIELD EQUATIONS AND THEIR 
SOLUTIONS 

We start with the metric (Marder [8]) 

(2.1) 2 2 2 2 2 2 2 2ds A (dt dx ) B dy c dz     

 where A, B and C are functions of t only. 
The distribution consists of a perfect fluid with an 
electromagnetic field. The energy momentum tensor 
of the composite field is assumed to be the sum of 
the corresponding energy momentum tensors. Thus 

(2.2)  1
R g R g K ( p)u u pg E

2
      

           
 

(2.2)(a)  


    
  


k

k

1
E g F F g F F

4
 

(2.3)  


    
  


k

k

1
E g F F g F F

4
 

(2.4)  
[ ; ]F 0
 

  

(2.5)  F ; J    

 where p and  are pressure and density 

respectively of the distribution, E


is the 

electromagnetic energy momentum tensor, F


is the 

electromagnetic field tensor, J is the current 4-

vector,  is the cosmological constant and u is the 
flow vector satisfying 
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(2.6)  g u u 1 


  

The co-ordinates are chosen to be commoving so that  

(2.7)  
1

u (0,0,0, )
A

   

and we label the co-ordinates  

1 2 3 4(x,y,z,t) (x ,x ,x ,x )  

We assume the electromagnetic field to be in the 
direction of x-axis so that F14 and F23 are the only non-

vanishing components of the field tensor F


. We 

write  

(2.8)  2 4 2 2 2 2

14 23F A F B C M     

The equation (2.2) may be written as  

(2.9)  
2

44 44 44 4 4 4 4 4

2 2

A B C A C A B A2
2

A A B C AC AB A

 
       

 

 

 
2K M ( 3p) ,        

(2.10)  

2

44 4 4 4 4 4

2 2

A A B A C A2
2

A A AB AC A

 
      

 
 

 
2K M ( p) ,         

(2.11)  

244 4 4

2

B B C2
2 K M ( p)

A B BC

 
            

 
 

(2.12)  

244 4 4

2

C B C2
2 K M ( p)

A C BC

 
            

 
 

where the suffix 4 after the symbols A, B, C denotes 
ordinary differentiation w.r.t. time t. These equations 

show that M
2
, , p are each functions of t only : and it 

then follows from equations (2.4) and (2.8) that F23 is a 
constant and F14 is a function of t only i.e. 

(2.13)  
2 2 2 2 2 1/2

23 14F k,F A (M k B C )      

where k is a constant.  

The case when F14 = 0, which implies J = 0, we get 
the model due to Roy and Prakash [9]. We here 

assume that 
14F 0 and find the only non-vanishing 

component of J to be 

(2.14)  
1 2 2 2 2 1/2

2

1
J BC(M k B C )

A BC t

 
    

 

Equation (2.14) shows that J is space like, unless 
  2 2 2M B C where  is a constant in which case 

J = 0. The 4-current J is in general the sum of the 
convection current and conduction current 
(licknerowicz [7] and Greenburg [3]. 

(2.15)  
0J u u F  


     

where 0 is the rest charge density and  is the 
conductivity. In the case considered here we have 0 
= 0 i.e., magnetohydrodynamics. From equations 
(2.13), (2.14) and (2.15) we find that the conductivity 
is given by 

(2.16)  
1

4

1
D D

4

    

where 
2 2 2 2 1/2D BC(M k B C )    

The requirement of positive conductivity in (2.16) 
puts further restrictions on A, B, C. Hence in the 
magnetohydrodynamics case metric functions are 
restricted not only by the field equations and energy 
conditions (Hawking and Penross [4] they are also 
restricted by the requirement that the conductivity be 
positive for a realistic model. 

The equations (2.9) – (2.12) are four equations in six 

unknows A, B, C, , p and M. In order to determine 
them two more conditions have to be imposed on 
them. For this we assume that the space – time is of 
degenerate petrow type – I, the degeneracy being in 

y and z directions. This requires that 
12 13

12 13C C . 

This condition is identically satisfied if B = C. 
However, we shall take the metric potentials to be 
unequal. We further assume that F14 is such that M

2
 

= f
2
 B

–3
 C

–3
 where f is a constant. From equations 

(2.11) and (2.12) we have  

(2.17)  
44 44B C

0
B C

   

Equation (2.17) with condition 
12 13

12 13C C gives  

(2.18)  4 4 4A C B
0

A C B

 
  

 
 

Since B C , equation (2.18) gives  
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(2.19) A = N (a constant). 

From equations (2.10), (2.11) and (2.19) we have  

(2.20)  
2 244 4 4B B C

KM N
B BC

   

Equation (2.17) on integration gives  

(2.21) 
4 4B C BC n   

n being an arbitrary constant of integration. Putting 

B

C
  and BC = , equation (2.21) goes to the form  

(2.22)  4 n
 

  
 

 

and equation (2.20) turns into 

(2.23)  
2 24 4

4

1
2KM N

   
    

    
 

From equations (2.22) and (2.23) we have  

(2.24)  
2 244 2KM N





 

which, after the use of condition  

 M
2
 = f

2
 B

–3
 C

–3
, reduces to 

(2.25)  

2 2

44 2

2Kf N
 


 

Equation (2.25) on integration yields 

(2.26)     
2

4 a


   


 

where  

(2.27)   

2 24Kf N
a 


 

and  is an arbitrary constant which we shell take to 

be unity, Clearly     a > 0. From equations (2.22) and 
(2.26) we get  

(2.28)  
1/2 1/2

d n d

( a)

 


   
 

Integration of (2.28) gives  

(2.29)  
2n

1/2 1/2b ( a)       
 

b being a constant of integration. 

Therefore  

(2.30)  
2n

2 1/2 1/2B b ( a) ,       
 

(2.31)  
2n

2 1/2 1/2C ( a)
b


        

Consequently the line element (2.1) takes the form  

(2.32)  

2
2 2 2 2 2 2 2

2

d
ds A dx B dy C dz

(d / dt)

 
    

 
 

which by use of equation (2.19), (2.26), (2.30) and 
(2.31) takes the form 

(2.33)  
2 2 2 2ds N dt dx

a

  
   

   
 

 
2n

1/2 1/2 2b ( a) dy       
 

 
2n

1/2 1/2 2( a) dz .
b


        

The transformation  

1
x x, b y Y, z Z, (a T)

b
      

Reduces the metric (2.33) to the form 

(2.34)  
2 2 2 2a T

ds N dT dX
T

  
   

  
 

 
2n

1/2 1/2 2(a T) T (a T) dY     
 

 
2n

1/2 1/2 2(a T) T (a T) dZ


     
 

Clearly for a realistic model T should be positive 
(due to T

1/2
). 
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3. SOME PHYSICAL FEATURES  

(a) The Distribution in the Model 

 Pressure and density for the model (2.34) are  

(3.1)  
2 2

2 2 3

1 1 n Kf
Kp .

4N (a T) t(a T) 2(a T)

 
     

   
 

(3.2)  
2 2

2 2

1 1 n Kf
K .

4N (a T) T(a T) 2(a T)

 
      

   

 

The model has to satisfy the reality conditions (Ellis 
[2]) 

(i) p 0    

(ii) 3p 0    

which requires that  

(3.3)  
2

2

1 n
0 a T

n

 
   

 

 

and  

(3.4)  2 2

2 2 3

1 n 1 Kf

2N T(a T) (a T) 2(a T)

 
    

   

 

The condition (3.3) holds only when n
2
< 1. 

In the case of stiff matter ( = p) we have  

(3.5)  

2

3

Kf

2(a T)
 


 

and  

(3.6)  
2

2 2

1 1 n
p

4N (a T) T(a t)

 
    

  

 

The flow vector u
of the distribution is given by 

(3.7)  
1 2 3 4 1 T

u u u 0,u
N a T

   


 

The flow vector u satisfies u ; u 0   . 

Thus the lines of flow are geodesios. Tensor of 

rotation w


defined by 

(3.8)  
; :w u u

   
   

is identically zero. Thus the fluid filling the universe is 

non-rotational. The scalar of expansion 
gmu :   is 

given by 

(3.9)  

1/2

3/2

1 T

N (a T)
 


 

Which tends to zero when T  . The components 

of shear tensor defined by 

(3.10)  ;

1 1
(u u ) (g u u )

2 3
      

       

are  

(3.11)  

1/2

11 3/2

NT

3(a T)
 


 

 
1/2 1/2

2n
1/2 1/2

22

1 1 T T
T (a T) n

N 2 a T 3(a T)

  
               

 

 
1/2 1/2

2n
1/2 1/2

33

1 1 T 1 T
T (a T) n

N 2 a T 3 (a T)

   
               

, 

 
44 0  . 

Hence magnitude of the shear is given by 

(3.12)  
2 1

2




     

 
2 3 2 2

T 1 1 T 2

18N (a T) 2N (a T) 2 (a T 9


  

  

 

 

1/2
2

2

T 4 nT
2n

(a T) 3 (a T)


  

  
 

The non-venishing components of the conformal 
curvature tensor are 

(3.13)  
12 13 23

12 13 23

1
C C C

2
    

 
2

2 3/2 3/2 2

1 3na n 1

6N 4T (a T) 2T(a T) 2(a T)

 
   

   
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The non – zero component of the charge current 4- 
vector is given by 

(3.14)  

2
1/2

1 2 2

2 5/2

r
J f k (a T)

2N (a T)



     
 

and the conductivity is given by 

(3.15)  

2
1

2 2f
f k (a t)

2N(a T)



     
 

For a physically realistic MHD model  has to be 
positive which requires that 

1/2N 0 and | f | | k || (a T) |   (Since a and T 

are already positive).  
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