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Abstract - In this paper, we first introduce the class of partial symmetric spaces and then prove some 
fixed point theorems in such spaces.We introduce an analogue of the Hausdorff metric in the context of 
partial symmetric spaces and utilize the same to prove an analogue of the Nadler contraction principle in 
such spaces. Our results extend and improve many results in the existing literature. We also give some 
examples exhibiting the utility of our newly established results. 

Keywords - partial symmetric; fixed point; contraction and weak contraction; Nadler’s theorem,   

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

: INTRODUCTION AND PRELIMINARIES 

The Banach contraction principle, which Banach [1] 
demonstrated to be a useful and potent tool in 
nonlinear analysis, was applied in the context of fixed 
point theory. Numerous approaches have been taken 
to expand and generalize this idea. In the study of 
fixed point theory, one may occasionally run into 
circumstances where none of the metric criteria are 
necessary. Numerous researchers obtained fixed point 
findings in semi-metric spaces [98] (also known as 
symmetric spaces) as a result of this feature. A 
mapping    on a non-empty set Ӽ is called symmetric if   

   (a, b) =   (b, a) and    (a, b) = 0 if and only if a = b, 

for all a, b ∈ Ӽ.  

We refer to the pair (Ӽ,  ) as symmetric space. The 
uniqueness of the sequence's limit cannot be ensured 
since the function    "  is not continuous in general 
due to the lack of triangular inequality. Wilson [12] 
proposed a number of related weaker criteria to get 
around the challenges that were previously mentioned. 
We have implemented weaker conditions in our 
setting, which will be explained shortly in the 
preliminary section. The study of fixed points for multi-
valued contractions with the Hausdorff metric was 
started in 1969 by Nadler [13], who also extended the 
Banach fixed point theorem to set-valued contractive 
mappings. 

As a generalization of partial metric spaces and 
symmetric spaces, the goal of this chapter is to 
present partial symmetric spaces and use them to 
demonstrate fixed point solutions for both single-
valued and multivalued mappings.  

We now introduce the partial symmetric space in 
order to expand the classes of partial metric spaces 
and symmetric spaces. This is done as follows: 

Definition 1.1.: Let us assume that Ӽ be a nonempty 

set. A mapping               is said to be a 

partial symmetric if (for all x, y, z∈ Ӽ):  

(  ) x = y if and only if   (x, x) =   (y, y) =   (x, y);  

(  )   (x, x) ≤   (x, y);  

(  )   (x, y) =   (y, x). Then the pair (Ӽ,  ) is said 
to be a partial symmetric space.  

A partial symmetric space (Ӽ,  ) reduces to a 
symmetric space if   (x, x) = 0, for all x ∈ Ӽ. 
Obviously, every symmetric space is a partial 
symmetric space but not conversely.  

Example 1.1.: Let Ӽ =   and define a mapping 
              

as follows , for all x, y ∈ Ӽ and    > 1):   (x, y) = |x 

− y|   + |x − y|   . Then the pair (Ӽ,  ) is a partial 
symmetric space.  

Example 1.2.: Let Ӽ = [0, ∞) and define a mapping 

              as follows for all x, y ∈ Ӽ and    > 

1):   (x, y) = (max {x , y}   + {x , y}   ). 

Then the pair (Ӽ,  ) is a partial symmetric space. 

Example 1.3. : Let Ӽ = [0, π) and define a mapping 

               as follows, for all x, y ∈ Ӽ and a > 

0):   (x, y) = sin |x − y| + a. Then the pair (Ӽ,  ) is a 
partial symmetric space.  
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 Theorem on Partial Symmetric Spaces 

Let (Ӽ,  ) be a partial symmetric space. Then  -open 
ball with center x ∈ Ӽ and radius  > 0 is defined by:  

      ) ={y∈ Ӽ:   (x, y)   (x, y) +  }. 

Similarly, the  -closed ball with center x ∈ Ӽ and 

radius  >  0 is defined by:  

        ={y∈ Ӽ:   (x, y)   (x, y) +  }. 

The family of  -open balls, for all x ∈ Ӽ and  > 0  

          ): x ∈ Ӽ and    > 0}, form a basis of some 

topology τ  on Ӽ. 

Lemma 1.4.: Let (Ӽ, τ ) be a topological space and    
Ӽ → Ӽ. If   is continuous then every convergent 

sequence {  } ⊆ Ӽ such that    → x implies     → 
 x. The converse holds if Ӽ is metrizable. 

 Further down the road, we will need to define a few 
terms more thoroughly. These include full partial 
symmetric spaces, convergent sequences, and 
Cauchy sequences. 

Definition 1.5. : A sequence {  } in (Ӽ,  ) is said to be 

 -convergent to x ∈ Ӽ, with respect to τ , if   (x, x) = 

               

Definition 1.6.: A sequence {  } in (Ӽ,  ) is said to be 

 -Cauchy if and only if                exists and 
finite. 

Definition 1.7. : A partial symmetric space (Ӽ,  ) is 
said to be a  -complete if every  -Cauchy sequence 

{  } in (Ӽ,  )   is  -convergent with respect to τ  to a 

point x ∈ Ӽ such that   (x, x) =               
=              . 

We are now applying some definitions from the context 
of symmetric spaces to the context of partially 
symmetric spaces.   

Definition 1.8.: Let (Ӽ,  ) be a partial symmetric. For 
the sequences {  } , {  } and {  } and  x, y in Ӽ, we 
have 

 ( 1)                 (x, x) and               
  (x, y) imply x = y. 

( 2) A partial symmetric   is said to be 1-continuous if  

                (x, x) implies that 

                (x, y).  

( 3) A partial symmetric   is said to be continuous if 

                (x, y) and  

                (x, y).  

 Imply that 

                 (x, y).  

 (  4)                 (x, x) and 

                 (x, x) imply                 
(x, x).  

 (  5)                  (x, x) and 

                 (x, x)  imply  

                 (x, x)  . 

Remark 1.9. : It may be seen from Definition 1.8 that 
(  3) ⇒ (  2), ( 4) ⇒ (  1), and (  2) ⇒ (  1), but 
generally speaking, the opposite implications are not 
true. 

2: FIXED POINT RESULTS IN PARTIAL 
SYMMETRIC SPACES 

 Let (Ӽ,  ) be a partial symmetric space and    Ӽ → Ӽ. 

Then for every x ∈ Ӽ and for all i, j ∈ N, we define 

 ( , , x) = sup{  (       ):i, j ∈ N }…. (2.1) 

Definition 2.1. Let (Ӽ,  ) be a partial symmetric 

space and    Ӽ → Ӽ be a mapping. Then mapping  

   is said to be  -contraction if 

  ( x,  y) ≤ α  (x, y), ∀ x, y ∈ Ӽ,                ………..                      
(2.2) 

where α ∈ (0, 1).  

We are currently demonstrating a counterpart of the 
Banach contraction principle within the context of 
partially symmetric spaces. 

 Theorem 2.2. Let (Ӽ,  ) be a partial symmetric 

space and    Ӽ → Ӽ be a mapping. Let us assume 
that the following conditions are satisfied:  

(i)   is  -contraction for some α ∈ [0, 1),  

(ii) There exists   ∈     such that  ( , ,   ) 
< ∞,  

(iii)  Either  
(a)   is continuous or 

 (b) (Ӽ,  ) enjoys the ( 1) property. 

 Then   has a unique fixed point x ∈ Ӽ such that   
(x, x) = 0. 
 Proof. Choose   ∈     and construct an iterative 

sequence {  } by: 

   =   ,    =    ,    =    , · · · ,    =      , · · · .  

Now, from (5.2.2) (for all i, j ∈ N), we have  

  (        
      ≤ α   (          

        .  
Since the above inequality holds for all i, j ∈ N, 
therefore by conditions (ii) and (2.2), we have 

  (        
      ≤ α   (          

        . 
 ( ,      ) ≤ α ( ,        )  

Repeating this procedure, we have (for every n ∈ N)  
 ( ,      ) ≤    ( ,    )          ………….. (2.3) 

Let n, m ∈ N such that m = n + p (for some p ∈ N). 
On using (2.3), we have  
  (      

      ≤  ( ,      ) ≤    ( ,    ) 

As  ( ,    ) < ∞ and α ∈ (0, 1), we have 
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                  , so that {  } is a  -Cauchy 

sequence in Ӽ. 
In view of the  -completeness of Ӽ, there exists x ∈ Ӽ 

such that {  }  -converges to x. Now, we show that x 

∈ Ӽ is a fixed point of  .  

Assume that   is continuous. Then x =            

 (    
   

  )     Alternately , assume that (Ӽ,  ) 

enjoys the ( 1) property.  

Now, we have   (       ) ≤   (     ), which on 
taking n → ∞ implies that                     
Thus, from the ( 1) property,    = x. Therefore, x is a 

fixed point of  . To prove the uniqueness of fixed 
point, let on contrary that x, y ∈ Ӽ such that    = x and 

   = y.  

Then by the definition of  -contraction, we have   (x, 

y) =   (  ,   ) ≤ α  (x, y), a contradiction. Hence, x = 
y, that is, x is a unique fixed point of  .  

Finally, we show that   (x, x) = 0. Since   is  -

contraction mapping, hence we have   (x, x) =   ( x, 
 x) ≤ α  (x, x)   , this implies that 

  (x, x)   < 0 implying thereby   (x, x)   = 0. This 
completes the proof. Now, we recall the definition of 
Kannan-Ćirić contraction condition [14].  
Definition 2.3.: Let (Ӽ,  ) be a partial symmetric 

space. A mapping    Ӽ → Ӽ   is said to be Kannan-

Ćirić type  -contraction if  

(for all x, y ∈ Ӽ)  
  ( x,   ) ≤ α max{  (x,  x),   (y,  y)}…..(2.4)   

where α ∈ [0, 1).  
Next, we prove a fixed point result via Kannan-Ćirić 
type  -contraction in the setting of partial symmetric 
spaces.  
Theorem2.4.: Let (Ӽ,  ) be a partial symmetric space 

and    Ӽ → Ӽ be a mapping. Assume that the 
following conditions are satisfied:  

(i)   is a Kannan- Ćirić type  -
contraction mapping,  

(ii)  is continuous.  
Then   has a unique fixed point x ∈ Ӽ   such that   (x, 
x)   = 0.  
Proof. Take   ∈ Ӽ and construct an iterative sequence 

{  } by:  

   =      ,    =         =     , · · · ,    =     , · · · .  
Now, we assert that                  =0. On setting 

x =    and y =      
in (2.4), we get 
                 =             
             ≤ α max{                       } 
              ≤ α max{                       ……….(2.5) 

Assume that max {                       
=           . 
Then, from (2.5), we have 
          ) ≤           , a contradiction (since α ∈ 
(0, 1)).  
Thus, max {                       =            
Therefore, (2.5) gives rise             = α           , 
for all n ∈ N.  
Thus, inductively we have              =             
for all n ∈ N. On taking limit as n → ∞, we get 
                             (2.6) 

 Now, we assert that {  } is a  -Cauchy sequence. 

 Form (5.2.4), we have (for n, m ∈ N) 

 
                        

                                    
                              

By taking limit as n, m → ∞ and using (2.6), 
 We have 
                           ……… (2.7)  

Hence, {  } is a  -Cauchy sequence.  

Since (Ӽ,  ) is  -complete, then there exists x ∈ Ӽ, 
such that 

                . 

 Now, we have shown that x ∈ Ӽ is a fixed point of  .  

By the continuity of  , we have 

     
   

        
   

        

Therefore, x is a fixed point of    . For the 

uniqueness part, let on contrary that x, y ∈ Ӽ are 
such that  x = x and  y = y.  

Then from (2.4), we have 

  (x, y) =   ( x,  y)  

                                                   ≤ α max{  (x,  x)   
(y,  y)} 

                                                 ≤ α max{  (x, x),   (y, 
y)}. 

 So, either   (x, y) ≤ α  (x, x) or   (x, y) ≤ α  (y, y), 
which is a contradiction. Therefore, x is a unique 
fixed point of .  

Finally, to show that P(x, x) = 0. Then from (2.4), we 
have  

  (x, x) =   ( x,  x)  

               ≤ α max{  (x,  x)   (x,  x)} 

               ≤ α max{  (x, x),   (x, x)}. 

Which implies that   (x, x) < 0 implying thereby  (x, 
x) = 0.  

This completes the proof. 

Now, we present some fixed point results for Ćirić 
quasi contraction in the setting of partial symmetric 
spaces. We start with the following definition.  

Definition 2.5.: Let (Ӽ,  ) be a partial symmetric 

space and    Ӽ → Ӽ be a mapping. Then   is said to 

be  -weak contraction if for all x, y ∈ Ӽ and α ∈ (0, 
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1)   ( x,  y) ≤ α max    (x, y),   (x,  x),   (y,  y),   
(x,  y),  (y,  x)} 

   …. (2.8)  

Proposition 2.6. Let   be a  -weak contraction for 

any α ∈ (0, 1). If x is a fixed point of  , then   (x, x) = 
0. 

Proof. Suppose x ∈ Ӽ is a fixed point of   . Since   is 

a  -weak contraction, so that 

  (x, x) =   ( x,  x)  

≤ α max {   (x, x),   (x,  x),   (x,  x),   (x,  x,   (x, 

 x) } 

= α max {  (x, x),   (x, x),   (x, x),  (x, x),  (x, x)    

= α   (x, x) 

This is implies that   (x, x) < 0 implying thereby   (x, 
x) = 0.   

Theorem 2.7.: Let (Ӽ,  ) be a partial symmetric space 
and    Ӽ → Ӽ be a mapping. Suppose that the 
following conditions hold:  

(i)   is a  -weak contraction for some α ∈ [0, 
1),  

(ii)  there exists   ∈ Ӽ such that   ( , , x) < 
∞,  

(iii)  is continuous. 

 Then   has a unique fixed point.  
Proof. Assume   ∈ Ӽ and construct an iterative 

sequence {  } by:  

   =      ,    =         =     , · · · ,    =     , · · · .  
 Let n be an arbitrary positive integer. Since   is a  -

weak contraction, for all i, j ∈ N, we have  

  (        
      ≤ α max {   (          

          

  (          
         (          

         

  (          
         (          

        

Since above inequality is true for all i, j ∈ N, therefore 
by the conditions (ii) and (5.3.1), we have  

 ( ,  ,     ) ≤ α  ( ,  ,       )  

Continuing this process indefinitely, we have (for all n 
≥ 1)  

 ( ,  ,     ) ≤    ( ,  ,   ) ……….(2.9) 

Now, for each n, m ∈ N such that m = n + p (for some 
p ∈ N), we have (due to (2.9))  

      ,  
     )   ( ,  ,     ) 

    ( ,  ,   ) 

 Since  ( ,  ,   ) < ∞ and α ∈ (0, 1), we have 

                   , so that         is a  -Cauchy 

sequence in Ӽ. 

 In view of the  -completeness of Ӽ, there exists x ∈ Ӽ 

such that      -converges to x.  

Now, we show that x is a fixed point of    . By the 

continuity of    , we have 

     
   

        
   

        

Therefore, x is a fixed point of  .  

For the uniqueness part, let on contrary that x, y ∈ Ӽ 
are such that    = x and 

   = y. Thus, by using the condition (2.8), we have 

  (x, y) =   (  ,   )  

                         ≤ α max    (x, y),   (x,   ),   (y, 

  ),   (x,   ),   (y,   ) 

                   = α max {   (x, y),   (x, x),   (y, y),   (x, 
y),   (y, x) }. 

 By using the property (2 ), we have   (x, y) ≤ α  

(x, y), a contradiction so that   (x, y) = 0 which 

implies that x = y. Thus,   has a unique fixed point.  

This completes the proof.  
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