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Abstract -In this articlewe will discuss the concepts of dislocated and dislocated quasi-metric spaces as
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PRELIMINARILY NOTES

To investigate the generality of Banach's Contraction
principle and the concept of dislocated metrics, metric
domains were studied in the framework of domain
theory [3].Hitzler and Seda were the first
mathematicians to examine the dislocated metric
space in quasi-metric spaces in [6, 7]. In the
disciplines of topology, electronics engineering, and
logic programming, these metrics are very important.
The rational type of contractive condition is used by
D.S. Jaggi.

By generalizing the well-known Banach Contraction
Principle in these spaces whenever the self distance
for any point does not have to be equal to zero, the
Hitzler and Seda concept of a dislocated metric space
creates the sense of a dislocated metric space.

The term “dislocated quasi-metric space" was
originally used by Zeyada et al. [14], and the Hitzler
and Seda finding was generalised to such spaces. In
recent years, Isufati [8], Aage and Salunke [2], and
Rao-RangaSwamy [12] have studied dislocated and
dislocated quasi-metric spaces.

In order to validate our conclusions, we will first
provide a few definitions and theorems produced by

ol: o(a,a)=0,

52: 6(a,b)=5(b,a)=0 ,then a=bh,
63: S(a,b)=6(b,a),

o4: oO(a,b)<o(a,c)+d(c,b)

forall a,b,ce A .

If the criteria O 1 through & 4 are met, then O is
referred to as a metric on A. It is referred to as a
quasi metric space if it meets the requirements o 1,
0 2,and O 4. It is referred to as a dislocated metric
(or simply & -metric) on A if conditions o2, o 3,
and o 4 are met, and as a dislocated quasi-metric
(or simply & g-metric) on A if just conditions o 2 and
O 4 are met. A dislocated quasi-metric space is a
set A that is not empty and has the & g-metric, or (A,
o).

Definition [14]: A sequence {Xn}in O g-metric in
(A,0) is called Cauchy if for all >0, 3IX, e N,

other mathematicians. such that VM,N>X,, J(a,a,)<e or =
]
Definition[14] Let A be a non-empty and let o(a,,a,)<e. %
0:AxA —[0,0) be a function, called a distance A=y
function, satisfies: §
s
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If the afore mentioned issue is resolved by
max{5(a,,a,),5(a,,a, )} <e, the sequence {x.}
is & g-metric space (A, 0 ) is called ‘bi’ Cauchy.

Definition [14]: A sequence {a,} & g-converges to A
if

limo(a,,a) =limd(a,a,) =0

In this case A is called a &, -limit of &,and we write

a, —>a..

Proposition:In a 5q -metric space, every convergent
sequence is bi Cauchy.

Definition [14]: If every Cauchy sequence contained
within the 5q -metric space (A, 0 ) is 5q -convergent,
then it is said to be complete.

Lemma [14]: Every segment of the 5q -convergent

sequence to a point X is 5q -convergent to X .

Definition [14]: Assume that (A,J) is a 5q -metric
space. If there is suchamap f : A > A

said to be contracted if there exists 0 < A <1 such
that 5[ f (), f (b)]< A5(a,b).

, then it is

Lemma 1 [14]: Assume that (A,J) is a 5q -metric
space. If f:A — Ais a contraction function, then

f"(a,) is a Cauchy sequence for each a, € A,

Lemma 2 [14]: In a 5q -metric space, there are no

other 5q -limits.

Theorem 1 [14] : Let f :A — Abe a continuous
contraction function, and let (A, &) be a complete 5q -

metric space. Consequently, f has a distinct fixed
point.

The Isufati [8] proved the following conclusions in
dislocated and dislocated quasi-metric spaces.

Theorem 2 [8]: Let T:A— A be a continuous
mapping meeting the following requirement, with (A, &
) being the complete 5q -metric space:

d(y, Ty)[1+d(x,Tx)]
d(Tx,Ty) <« 1+d(xy) + 4d(X,y)

forall x,yeA, , >0, 0< <1 Then T has
unique fixed point.

Theorem 3[8] : Let (A, O ) be a complete 5q - metric

space and let T : A— A be a continuous mapping
satisfying the following conditions:

O(TX, Ty) < ad(X, Ty) + Bo(Y, TX) + y5(X, y)

where a,ﬂ,y are non negative, which may depends
on both X and Y, such that  sup
{200+ 2L +y: X,y € X}<1. Then T has unique
fixed point.

Theorem 4[8] : Let (A, O ) be a complete dislocated
metric space. Let f,g:A— Abe continuous
mapping satisfying:

5(f, gy)<h max{a(x, V), 0%, 1), 5(y, 9y), M}

2

forall X,y A and 0 <h <1.Thenf andg have
common fixed point.

The findings fromAageandSalunke [1, 2] are as
follows:

Theorem 5 [1] : Let (A, &) be a complete 5q -metric
space. If T: A —>A be a continuous mapping
satisfying

S(Tx, Ty) < a{d(x, TX) + 5(y, Ty)}

forall X,y € X and 0< @ <1/2. Then T has a
unique fixed point.

Theorem 6 [1] : Let (A, &) be a complete 5q -metric
space. Let T : A— A be a continuous generalized
contraction. Then T has a unique fixed point.

Theorem 7 [1] : Let (A, &) be a complete dislocated
metric space. Let T:A—>A be continuous
mapping satisfies;

O(TX, Ty) L ad(X, y) + BO(X,TX) + yo(y, Ty)

59Ty, Ty) (% Ty)s(y, Tx)
5(x,y) 5(%,y)
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for all X,yeA and ¢, ﬂ, 7, 5”u >0 with In general, as we continue this process,
n

a +ﬂ+ Y+ 5+4,u <1. Then T has a unique 5(Xn’ Xﬂ+1) <A 5(X1’ XO)

fixed point.

Since 0<A<lasn—>o, A" =0.
Main Result:

A has a -Cauchy sequence as a result. Therefore, in
We first present the following theorem in order to A, dislocated quasi converges to some u. I being a
illustrate Theorem 3.1.20 in the context of dislocated continuous mapping , we have
guasi-metric spaces.

rw=Imr(x,)=Ilimx_,=u.
Theorem 8: Let I' be a continuous self-mapping () (%) n+l

defined on a complete 5q-metric space (A,0). Conseguently, u is a fixed point onT.

Further let I" satisfy the contractive condition,
Uniqueness: Consider u as a fixed point of I". Next by

S(x.Iy) < ad(x,l“x).&(y,l'y) N S(x,Ty).5(y,I'x) 5% y) Q)
5(x,y) 5(x,y)
1) o(u,u) =6(I'u,Tu)
For all xyeAand a,B,y=0, with Su,Tu).8(u,Tu) _ &(u,Tu).5u,Tu)
. : . <a +p4 +y5(u,u)
a+ ff+y <1.Then I' has a unique fixed point. o(u,u) S(u,u)
Proof: Let X, be any random point in A. Set forth a <(a+p+y)o(u,u)
sequenceq X in A such that X, =I(X,),
a o} 1 =T0%) which only applies if oJ(u,u)=0, since
X2 :F(Xl)’ .......... Xn+1—F(Xn), ......... O£a+ﬂ+7/<land 5(“,”)20
Replace x by X _; andy by X in(3.2.1), we have Thus &(u,u) >0, if uis a fixed point of I". Assume
that A has two fixed points, u and v, which are
O(X,, Xpy) =0(I%, 1, TX,) l'u=uand I'v=v.
5%, 1, TX, ). 806, TX,) - 8%y, T%,)- (X, TX, ) Then by (3.2.1) we have,
< O(Xo10 Xy
“ 5(X, 1 %,) +h 5(X, 1 %,) * 100 %) S(ruTv) <  SWTWIWITY) | p S IV).SWTY) o 1y
S(u,v) s(u,v)
5(Xn71’ Xn)'5(xn' Xn+1) E(anll Xn+1)'5(xn’ Xn)
S(Xo1s %) *h (X011 %y) 700 %,) 6(u,v) =o(I'u,Iv) < (B+7)o(u,v),
S @O(Xys Xpag) + 70Xy 40 %, ) - That provides 5(U,v) =0, since 0<(B+y)<1
and o(u,v)>0.
Therefore
Similarly o(v,u) =0 and hence u =v.
(K Xg1) € = 80X 11 %,) = 20Xy 1,%,) -
l-a Thus fixed point of I" is unique.
This completes the proof.
_ 7
Where 4 = 1-a <1 Theorem 9: Let (A, d) be a complete dislocated
quasi-metric space. Let I': A— A be continuous
Similar to it, we have mapping satisfies the condition;

5(Xn—l’ Xn) < ﬂa(xnfz’ Xn—l)

H c

As a result, for al X,yeXand ,f,720, with =
a+f+2y+26<1. Then T has a unique 2

2 ) . c

O(X,, X)) SAO(X, 55 X0 q) fixed point. k=
s

s

s
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. Let {Xn} be a sequence in A defined as
(%) =X,

Proof

follows for an arbitary X, € X ,

(X)) =Xyeeen. I'(x,)=x

gl 3e e eenes ,
Putting X = X,,_; and Y = X,, in (2) we have,

O (X, X, 4)0(X, l"x”)+
1+6(X 0 %,)
0% 1 1%, )8 (X T,)
1+6(Xp10 Xy)

(%, TX,) = (X, X,.1) < 5 (X

X,) +a,

n-1' *n
o S(X,4, I'X,)0(X,, X, 1)+a
° 1+6(X01: %) !
o S(X,, I'x,41)5(X,,I'X,)

S 14 5(X 0 %,)

§(Xn—ll Xn)g(xn ! Xn+l) +a
3
1+§(Xn—l'xn) 1+5(Xn—1'xn)
a 5(Xn711 X )§(Xn -1 n+1) + é‘(Xn ! Xn)a(xn ' Xn+1)
! l+5(xn1 n) ° 1+5(Xn1 n)

<o 8(X, 1, X))+,

é‘( n-1! n)§(xn’xn+1)+a 5( n-1? n+1)5(xn’ n)
1+06(X,10X,) 1+0(X,10X,)

a 5(Xn—1ixn)5(xnfllxn+l)+a 5(Xn’ n)g(xnlxrwl)

‘ 1+6(X,4. %) 1+6(X,4. Xy)

<06 (X 4, X,) +

3

5

6(Xn—1lxn)6(xnlxn+1) + 5(Xn—1lxn+1)5(xnlxn)

< o6(X %)+ a, 3

1+6(X,4, X,) 1+6(X, 4, %)
+a ( n-1° n)[é‘(xn 11 n)+5(x Xn+1)] +a, 5(Xn’xn)5(xn’xn+l)
! 1+5(Xn—1 Xn) ° 1+5(Xn—1lxn)

<oy +a,)0 (X, X, ) +0,0(X,, Xy ) + 3.0+, 5(X,, X,) + 5.0

(A—a, —a,)o(X,, X, ;) < (o, +a,)0(X, 1, X,)
O(Xys Xn,1) smﬁ(xn_l,xn)
(l-a,-a,)

§(Xnixn+1) < ig(xn -1 n)

(4 +ay)

0<A= <1

Q-a,-a,)
Similarly ,
O(X, 1, X,) S A0(X, 5y X 4)
Therefore, we get
S(Xy Xy) S (X 50 X, )
Continuing in this way, we have

O(Xy s Xpyy) S A" (X, X,)-

5(Xn71’ Xn+1)5(xn’ n) +

Sincel0<A<1l, so for N—0o0, we have
O0(X,,X,,;) > 0.  Similarly we  show that
8(Xo,1s X,) = 0. Hence {X, } is a Cauchy sequence

in complete dislocated quasi-metric space A. So there
is a point U € X and since I is continuous, therefore

I'(u)=T(imx,)=lmI[(x,)=limx,_,=u. Thus
u is a fixed point of T".

Uniqueness: Let u be a fixed point of I" i.e. TU=U.
Then by condition (3.2.2), we have,

5(u,Fu)6(u,Fu)+a 5(u,Fu)5(u,Fu)+

6(f'u,Tu,) < d(u,u) + 2,

1+68(u,u) ¥ 1+65(u,u)
o(u,Tu)d(x,Ty) ra o(u,Tu)é(u,Tu)
1+ 6(u,u) * 1+68(uu)

o(f'u,Tu,))< (o +a, +a,+a, +a;)o(u,u)

Which is  true  only  if o(u,u)=0

(g +a,+a;+a,+a;)<1.

Thus, o(u,u) =0, for a fixed point u of I". Similarly
o(v,v)=0

Let u, v be fixed points of ', i.,e. TU=U andI'v=V

o(Tu,Iv,)<ao(u,v)+a, (U, Tu)5(v, I'v) +

S(u,Tv)é(v,Tu) .

1+65(u,v) o 1+6(u,v)
a, S(u,Tu)é(u,Tv) ra o(v,Tu)o(v,Tv)
1+8(u,v) 1+68(u,v)

o(,v)=o(Tu,Tv,) <a0(u,V)++a,0(u,v)

o(u,v) < (g +3)o(u,v)

This implies that o(u,v) =0=05(v,u), since

(ap +a3) <1.
Further, o(u,v)=0=0(v,u) gives u=v.

Hence I has unique fixed point.
This completes the proof.

Theorem 10: Let (A, d) be a complete dislocated
metric space. Let X,I': A— A be continuous
mapping satisfying:
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o(x,2x)+o(y,Ty),
oy, Iy) +6(x,y),
o(X,2X)+o(x,y)

o(Zx,I'y)+d(X,Yy)

o(Zx,Ty) < amax

)

forall X,y € A and @ €[0,1/2). Then = & "have
common fixed point.

Proof: Let X, € A be arbitrary. Define the sequence
{Xn} by, X, =Z(X,), X, =I'(x,),
X@n) = T(Xon1) s Xonea = Z(Xg) oo ,

Replace x by X, andyby X, 4 in(3) we have,

5(X2n+l’ X2n+2) = 5(ZX2n ' 1—‘)(2n+1)

O (Xan1Xp0) + 0 (Xonia: [X50,1),
O (Xoni1s TxXoni1) + 0 (Xan, Xonia)s
O (Xan1 ZXoq) + 6 (Xans Xone1)

(XX, IXpn.0) + 6 (X500 Xonia)

< amax

O (Xans Xan 1) + 0 (Xoni1s Xonsa)s
O (Xanias Xans2) T 0(Xan, Xons),
O (Xans Xania) + 0 (Xan, Xon 1)

O (Xan41s Xans2) + 0 (Xans Xane1)

< amax

S a[g(XZn’ X2n+1) + 5(X2n+l’ X2n+2)]
Therefore,

o
5(X2n+l’ X2n+2) < m 5(X2n ' X2n+1)

and 5(X2n+l’ X2n+2) < /15(X2n ' X2n+1)

0<A<«1.

a
where 4 = ——,
l-«o

Similarly
5(X2n ' X2n+l) < ﬁ“é‘(XZn—U X2n)
and so é‘(inJrl’ X2n+2) < 125(X2n—1’ X2n)

Continue in this manner, we have,

é‘(XZnJrl’ X2n+2) < j“né‘(xO’ Xl)

Since 0<A<1,as N—>o, A" - 0. Thus {X.}

is a Cauchy sequence in a complete dislocated metric
space A. Therefore there exists a point U € Asuch

that X, —>U. subsequences

x> uand  {I'x, .} > u, Y &T are

continuous, so we must have 2U=U and I'U=U.
Thus u is a common fixed point of X & I".

Therefore the

Since

Uniqueness: Let u, v be common fixed point of X & I
. Then by the condition (3.2.3),

o(u,v)=06(Zu,I'v)

o(u,u)+o(v,v),
o(v,v)+o(u,v),
o(u,v)+4o(u,v)
o(u,v)+o(u,v)

< amax

Replacing v by u, we get,

o(u,u) <2ad(u,u). Since2a <1, we have
o(u,u) =0. Similarly we have &(v,v)=0. In this
have 6(U,V) < ad(u,V).
0<a<1/2, we haves(u,v)=0. Similarly we
have 6(v,u) =0 andso U=V.

way, we Since

Hence X & I have a Common Unique fixed Point.
The proof is completed.
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